## Falling Time

## Straight-Ahead Action

In Straight-Ahead Action, you establish the first key pose and have an idea of what you want for the rest of the poses.


## Straight-Ahead Action

In Straight-Ahead Action you continue by drawing the second key pose, then the third key, and so forth.


## Principles of Animation

Straight Ahead Action is another one of the Principles of Animation.


1. Squash \& Stretch
2. Timing
3. Anticipation
4. Staging
5. Follow Through
\& Overlapping Action 12. Solid Drawing
6. Straight Ahead \& Pose-to-Pose Action
7. Slow In and Slow Out
8. Arcs
9. Exaggeration
10.Secondary Action
10. Appeal

Pose-to-Pose Action is discussed later.

## Straight-Ahead for Ball Drop

The falling ball slows out from the apex (key \#1).
To use Straight-Ahead Action we need to find the position of the ball for key \#2, which is the first drawing after the apex.


## Distance Fallen from Apex

This table lists the distance fallen from the apex after the first few frames.


| Time <br> (seconds) | Frames | Distance <br> fallen <br> from apex |
| :--- | :--- | :--- |
| $1 / 24$ | 1 | $\frac{1 / 3}{}$ inch |
| $1 / 12$ | 2 | $1^{\frac{1}{3}}$ inches |
| $1 / 8$ | 3 | 3 inches |
| $1 / 6$ | 4 | $5 \frac{1}{3}$ inches |

After one frame the distance fallen is only slightly greater than the width of a pencil.

## Distance Fallen from Apex

After two frames the distance fallen is about the width of two of my fingers.

| Time <br> (seconds) | Frames | Distance <br> fallen <br> from apex |
| :--- | :--- | :--- |
| $1 / 24$ | 1 | $\frac{1}{3}$ inch |
| $1 / 12$ | 2 | $1^{\frac{1}{3}}$ inches |
| $1 / 8$ | 3 | 3 inches |
| $1 / 6$ | 4 | $5^{\frac{1}{3}}$ inches |

Your hand may be smaller or larger so you may need to use another measure, such as the length of your thumb.

## Distance Fallen from Apex



## Straight-Ahead for Ball Drop

The first key drawing after the apex, shooting on twos, is located at about this position $\rightarrow$


The table tells us that after two frames the ball falls by $1 \frac{1}{3}$ inches, a third of its diameter of 4 inches.

## Distance Fallen \& Weight

The distance that an object falls does not depend on its weight so long as the force of air resistance is minimal.

A baseball and a bowling ball fall together when released from the same apex.

## Distance Fallen from an Apex

Distance fallen from the drawing at the highest point (called the apex) is given by this table.

The formula to compute this table is:
(Distance in inches) $=$ (Number of Frames) $x$ (Number of Frames) x ( $1 / 3$ inch)

| Time <br> (seconds) | Frames | Distance fallen <br> from apex |
| :--- | :--- | :--- |
| $1 / 24$ | 1 | $1 / 3$ inch |
| $1 / 12$ | 2 | $1 \frac{1}{3}$ inches |
| $1 / 8$ | 3 | 3 inches |
| $1 / 6$ | 4 | $5 \frac{1}{3}$ inches |
| $1 / 4$ | 6 | 1 foot |
| $1 / 3$ | 8 | $1 \frac{3}{4}$ feet |
| $1 / 2$ | 12 | 4 feet |
| $2 / 3$ | 16 | 7 feet |
| $3 / 4$ | 18 | 9 feet |
| 1 | 24 | 16 feet |

## Planning a Scene

The table of distance
fallen is also useful for planning a scene.
For example, falling
from a height of 4 feet takes 12 frames.

Warning: Falling motion is often animated as being faster than reality; use the table only as a guide.


## Slugging \& Reaction Time

In planning a scene, you might also use a stopwatch to time the live action (this is called "slugging" a scene).

Your reaction time is probably a $1 / 4$ second delay so should you subtract that much from your stopwatch reading?

No, because there's a reaction time delay in hitting START but also in hitting STOP.

## Reaction Time

Can measure your reaction time by measuring the distance a ruler falls before you catch it and comparing with the table below.

| Distance Time <br> (inches) | Distance Time <br> (seconds) <br> (inches) |  |  |
| :--- | :--- | :--- | :--- |
| 1 | 0.07 | 8 | 0.20 |
| (seconds) |  |  |  |
| 2 | 0.10 | 10 | 0.23 |
| 3 | 0.12 | 12 | 0.25 |
| 4 | 0.14 | 14 | 0.27 |
| 5 | 0.16 | 16 | 0.29 |
| 6 | 0.17 | 18 | 0.30 |
| 7 | 0.19 | 20 | 0.32 |

Typical reaction time is 0.2 to 0.25 seconds

## Summary

- In Straight-Ahead Action you start from the first key, then create the next key, etc.
- Everything falls with the same timing and spacing (if air resistance is negligible).
- After one frame the distance fallen is about the width of a pencil; after two frames it's about the width of two fingers.
- The distance fallen may be looked up in a table or calculated with a simple formula.
- The fallen distance table may also be used when planning the total length of a scene.

