Additive Color

Part 1

W HERE DISCOVERIES BEGIN

Visible Light

Our eyes are sensitive to light waves in a specific range of wavelengths.

For light waves we traditionally use wavelength while for sound waves we typically use frequency.

Wavelengths \& Photons

Particles of light, called photons, are seen as different colors depending on their wavelength.

Visible light is roughly from 400 nanometers (blue) to 700 nanometers (red).

Light and Sound Analogy

Photons of different wavelengths are like musical notes of different pitch.

Spectrum

There are many different wavelength photons in a spectrum and the color you see depends on the composition of this mixture.

Metamerism \& Spectra

These two spectra are very different yet you may see them as exactly the same shade of yellow.
"True" Yellow

Mixed Yellow

Non-Spectral Colors

Some colors, such as magenta and white, have no matching photons in the visible spectrum.

Simple Trichromatic Theory

Imagine that inside your eye are these three guys, who send messages to your brain.

Trichromatic: Seeing Yellow

"True" Yellow \& Mixed Yellow

Sodium lamps emit near pure yellow photons

"Electric pickle" is a sodium light
Color monitor produces yellow by turning on the red and green pixels.

Red \& Green Lights

Red and green lights, when seen simultaneously, are perceived as yellow.

The Ear vs. The Eye

How the ear senses sound waves is distinct from how the eye senses light waves.

Hearing an E and a D together does not sound like an A.

Seeing green and red together does look like yellow light.

Trichromatic: Seeing Magenta

Maxwell Color Disk

Disk painted half red, half blue is magenta when spinning.

Trichromatic: Two is Not Enough

Trichromatic: Seeing White

Maxwell Color Wheel - White

White Mixing Ball

This color ball rapidly flashes red, green, and blue. Your eye can only see the separate colors when the ball is moving.

Not moving

Spinning

White Mixing Ball

Summary

- Visible light is composed of photons of with wavelengths between 400 to 700 nanometers.
- Trichromatic theory explains the connection between the spectrum and the color we see.
- Yellow is seen with yellow photons or a mix of red and green photons (or both).
- Magenta is seen only with a mix of red and blue photons (there are no magenta photons).
- White is seen with a mix of red, green, and blue photons.

