# Dynamic Balance



### Dynamic Balance

A pose that's out of balance for a stationary character may be in dynamic balance if the character is moving.







### Tilting the Line of Gravity

Acceleration tilts the line of gravity.





#### Balance in a Sudden Start

You can lose balance on a sudden start, say standing on a bus that starts moving, since acceleration tilts the line of gravity.



Fall towards the new Center of Pressure.

### Balance in a Sudden Stop

In the same way you can lose balance on a sudden stop since the deceleration also tilts the line of gravity, but in the opposite way.



Fall towards the new Center of Pressure.

### Leaning into a Turn

Centripetal acceleration tilts the line of gravity to the inside of the turn.





#### "Roll Over" Loss of Balance

Car making a tight turn may lose balance due to tilting of the line of gravity caused by centripetal acceleration.



### Centrifugal Force

Can view roll-over loss of balance in terms of the centrifugal force pulling the CG outward.



# Bullitt (1968)

Watch the cars as they take high-speed turns.



## Leaning In vs. Tilting Outward



# Leaning In vs. Tilting Outward



# Leaning In vs. Tilting Outward



#### Radius of the Turn

Going the same speed, the tighter the turn radius the greater the centrifugal force.



#### Radius of the Rotation

With constant rotation (rpms), the farther from the center the greater the centrifugal force.



### Summary

- When there's acceleration the line of gravity tilts in the direction of acceleration.
- In a turn, centripetal acceleration tilts the line of gravity toward the inside of the turn as the centrifugal force pulls outward.
- For a given speed, the tighter the turn the greater the centrifugal force.
- For a given rotation rate (rpms) the centrifugal force is greater on the outer rim.