
                                                                                                                                 Econ 104 
   Linear Regression      
 

1 | P a g e  
 

 
The Mathematical Derivation of Least Squares 

 
The Bivariate Case 
For the case in which there is only one independent variable, the classical OLS 
(ordinary least squares) regression model can be expressed as follows: 
 
     yi = β0 + β1 xi + ei      (1)  
 
where yi is dependent response variable, xi  is the independent explanatory variable, 
β0 is the regression constant, β1 is the regression coefficient for the effect of x, and 
ei is the error we make in predicting y from x. 
 
Now, in running the regression model, what are trying to do is to minimize the sum 
of the squared errors (SSE) of prediction – i.e., of the ei values – across all cases. 
Mathematically, this quantity can be expressed as: 
  

       (2) 
 

Specifically, what we want to do is find the values of b0 (The estimate of β0) and b1 (The 
estimate of β1) that minimize the quantity in Equation 2 above. 
 
So, how do we do this? The key is to think back to differential calculus and 
remember how one goes about finding the minimum value of a mathematical 
function. This involves taking the derivative of that function.  
 
If we want to find the values of b0 and b1 that minimize SSE, we need to express 
SSE in terms of b0 and b1, take the derivatives of SSE with respect to b0 and b1, set 
these derivatives to zero, and solve for b0 and b1. 
 
However, since SSE is a function of two critical variables, b0 and b1, we will need 
to take the partial derivatives of SSE with respect to b0 and b1. In practice, this 
means we will need to take the derivative of SSE with regard to each of these 
critical variables one at a time, while treating the other critical variable as a 
constant (keeping in mind that the derivative of a constant always equals zero). In 
effect, what this does is take the derivative of SSE with respect to one variable 
while holding the other constant. 
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We begin by rearranging the basic OLS equation for the bivariate case so that we 
can express ei in terms of yi, xi, b0, and b1. This gives us: 
 

iii xbbye 10 −−=      (3) 
 

Substituting this expression back into Equation (2), we get 
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where n = the sample size for the data. It is this expression that we actually need to 
differentiate with respect to b0 and b1. Let’s start by taking the partial derivative of 
SSE with respect to the regression constant, b0, i.e., 
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In doing this, we can move the summation operator (Σ) out front, since the 
derivative of a sum is equal to the sum of the derivatives: 
 
 

   ∑ 







−−

∂
∂

=
∂
∂ n

i xbby
bb

SSE
1

2
110

00

)(  

 

We then focus on differentiating the squared quantity in parentheses. Since this 
quantity is a composite – we do the math in parentheses and then square the result 
– we need to use the chain rule in order to obtain the partial derivative of SSE with 
respect to the regression constant.   In order to do this, we treat yi, b1, and xi as 
constants. This gives us: 
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Further rearrangement gives us a final result of: 
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For the time being, let’s put this result aside and take the partial derivative of SSE  
with respect to the regression coefficient, b1, i.e., 
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Again, we can move the summation operator (Σ) out front: 
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We then differentiate the squared quantity in parentheses, again using the chain 
rule. This time, however, we treat yi, b0, and xi as constants. With some subsequent 
rearrangement, this gives us: 
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With that, we have our two partial derivatives of SSE – in Equations (5) and (6) 

The next step is to set each one of them to zero: 
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Equations (7) and (8) form a system of equations with two unknowns – our OLS 
estimates, b0 and b1. The next step is to solve for these two unknowns. We start by 
solving Equation (7) for b0. First, we get rid of the -2 by multiplying each side of 
the equation by -1/2: 
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Next, we distribute the summation operator though all of the terms in the 
expression in parentheses: 
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Then, we add the middle summation term on the right to both sides of the equation, 
giving us: 
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Since b0 and b1 the same for all cases in the original OLS equation, this further 
simplifies to: 
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To isolate b0 on the left side of the equation, we then divide both sides by n: 
 
 

        (9) 

 
Equation (9) will come in handy later on, so keep it in mind. Right now, though, it 
is important to note that the first term on the right of Equation (9) is simply the 
mean of yi, while everything following b1 in the second term on the right is the 
mean of xi.  
 

    xbyb 10 −=        (10) 
 
Now, we need to solve Equation (8) for b1. Again, we get rid of the -2 by 
multiplying each side of the equation by -1/2: 
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Next, we distribute xi through all of the terms in parentheses: 
 

 
 

We then distribute the summation operator through all of the terms in the 
expression in parentheses: 
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Next, we bring all of the constants in these terms (i.e., b0 and b1) out in front of the 
summation operators, as follows: 
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We then add the last term on the right side of the equation to both sides: 
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Next, we go back to the value for b0 from Equation (9) and substitute it into the 
result we just obtained. This gives us: 
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Multiplying out the last term on the right, we get: 
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If we then add the last term on the right to both sides of the equation, we get: 
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On the left side of the equation, we can then factor out b1: 
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If we divide both sides of the equation by the quantity in the large brackets on the 
left side, we can isolate b. 
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Finally, if we multiply top and bottom by n we obtain the least-square estimator for 
the regression coefficient in the bivariate case. This is the form from lecture: 
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