Benoit Delaveau, MS, BEAP, CEM (aka Prof. Ben) benoit.delaveau@sjsu.edu Office hours sign-up here: https://calendly.com/benoit-delaveau

ENVS 119 - Energy & the Environment 02 - Energy Def., Laws and Units

- Today. Energy Definition
 - · Laws of thermodynamics
 - · Energy efficiency
 - Calculations
 - Group practice
 - Wrap-up

© Benoit Delaveau, Bay Area transmission lines, 2020.

Energy Definition, Laws of Thermodynamics

Energy: "The capacity to do work" or "Energy allows us to make things get hotter, move faster, go uphill...

1st Law of Thermodynamics: Energy is neither created or destroyed, it moves or changes form when stored, converted, or used.

2nd Law of Thermodynamics: Every time we do something with energy there is always some loss in energy quality or higher entropy.

© 2008 - Energy for Sustainability, John Randolph and Gilbert M. Master. 4.2 p118

What are the different forms of energy?

- Electro-magnetic/solar (r): magnets, light...
- Chemical (c): Gasoline, coal, natural gas, wood...
- Thermal (t): Warm elements can transfer heat to something else
- Kinetic/Mechanical (m): An object in motion can transfer its energy
- Electric (e): Electricity (electrons moving among molecules).
- Nuclear: Extremely powerful forces that hold a nucleus together.
- Gravitational: Gravity, pressure,...

The ratio between energy input and useful output is the efficiency of the system.

Example of Energy Conversions & Efficiencies

Conversions	Energies	Efficiencies
Large electricity generators	$M \rightarrow e$	98-99
Large power-plant boilers	$c \to t $	90-98
Large electric motors	$e \to m$	90-97
Best home natural-gas furnaces	$c \to t$	90-96
Dry-cell batteries	$c \to e$	85-95
Human lactation	$\mathbf{c} \to \mathbf{c}$	85-95
Overshot waterwheels	$\mathbf{m} \to \mathbf{m}$	60-85
Small electric motors	$c \to m$	60-75
Large steam turbines	$t \to m$	40-45
Improved wood stoves	$c \to t$	25-45
Large gas turbines	$c \to m$	35-40
Diesel engines	$c \to m$	30-35
Mammalian postnatal growth	$c \rightarrow c$	30-35
Best photovoltaic cells	$r \rightarrow e$	20-30

Diesel engines	$c \to m$	30-35
Mammalian postnatal growth	$c \to c$	30-35
Best photovoltaic cells	$r \rightarrow e$	20-30
Best large steam engines	$c \to m$	20-25
Internal combustion engines	$c \to m$	15-25
High-pressure sodium lamps	$e \to r$	15-20
Mammalian muscles	$c \to m $	15-20
Traditional stoves	$c \to t$	10-15
Fluorescent lights	$e \rightarrow r$	10-12
Steam locomotives	$c \to m $	3-6
Peak crop photosynthesis	$\mathbf{r} \rightarrow \mathbf{c}$	4-5
Incandescent light bulbs	$\mathbf{c} \to \mathbf{r}$	2-5
Paraffin candles	$c \to r$	1–2
Most productive ecosystems	$r \rightarrow c$	1–2
Global photosynthetic mean	$r \rightarrow c$	0.3

Energy labels: c-chemical, e-electrical, m-mechanical (kinetic), r-radiant (electromagnetic, solar), t-thermal

Energy Units are Form Dependent

Source	Energy content	Quantity
Natural gas	Therms/Btu/Joules	Cf/Ft ³
Petroleum	Joules/ Btu	Gallons/Quads
Coal	Joules/Btu	Tons
Electricity	Wh/Btu/Joules	?

Power v. Energy unit

• **Power**: (constant) rate flow of energy

• Energy unit: How much power is used over a define amount of time

Power	Energy Units
Watt (w) Always ON	Watt hour (wh)
kW	kWh
Horse power (hp)	0.7068 Btu/s

Energy Calculation Principles

From the MIT Units and Conversion Fact Sheet:

1 kWh = 3,412 Btu **or**
$$\frac{1 \text{ kWh}}{3,412 \text{ Btu}} = \frac{3,412 \text{ Btu}}{1 \text{ kWh}} = 1$$

Convert 100 kWh in Btu?

$$100 \text{ kWh x } \frac{3,412 \text{ Btu}}{1 \text{ kWh}} = 341,200 \text{ Btu}$$

Example (power v. Electricity unit)

Satellite box power is 16W (Off) and 17W (On) Flat screen TV is 5W (Off) and 68 W (On)

- Calculate the electricity used in Wh if TV is used 4 hours a day during 1 month (31 days). What fraction of the total electricity used is really useful when TV is On?
- If electricity is sold \$0.17 kWh by PG&E what is the cost per month of the system in standby (20 hours Off)?

Group Work or Exercise

- Back to class
 (10 minutes before end of class time)
- Start with TV ON (68W) for 4 hours/day in 31 days period (1 month)

$$68 W \times \frac{1(kW)}{1,000 W} \times \frac{4(h)}{1 \text{ day}} \times \frac{31 \text{ days}}{1 \text{ (month)}} = kWh \text{ in 1 month}$$

- Add: TV OFF (5W) for 20 hours/day in 1 month
- Add: Sat. Box OFF (16W) for 20 hours/day in 1 month
- Add: Sat. Box ON (17W) for 4 hours/day in 1 month

ENVS/ENGR 119 - Lecture 03

End