

SAN JOSE STATE UNIVERSITY Electrical Engineering Department

Bottom up IC design-flow Using an Analog Leaf Cell

IC DESIGN GROUP SAN JOSE STATE UNIVERSITY

A tutorial guide for using CDS tools for IC design in Leaf Cell

Shao Ng Eric Basham David W. Parent Electrical Engineering, SJSU One Washington Square San Jose, CA 95192-0084 Phone 408.924.3963 • Fax 408.924.2925

Table of Contents

HAPTER I: INTRODUCTION	7
1. The Leaf Cell:	
How to size:	
Initial Design	
Schematic Capture	
Pre - Layout	
Layout	
Design Rule Checking	
Circuit Extraction	
Layout versus Schematic	
Post Extraction Simulation	
Fabrication and Test	
Design 1: Current Mirror:	
Design 2: OTA:	
HAPTER 2: A CURRENT MIRROR TUTORIAL	
Section 1: Initial Design	
Section 2: Getting started with Schematic Capture and Spice Simulation	
Design entry through schematic capture:	
Creating a new library:	
Creating a schematic view:	
Creating a symbol view:	
Creating a test bench:	
Simulation in Spectre Spice using the Affirma environment:	
Section 3: Layout	
Pre-Layout of the CurrentMirror	
Layout in Leaf Cell:	
Design Rule Checking (DRC)	
Design Rule Checking (DRC) Circuit Extraction	
Design Rule Checking (DRC)	
Design Rule Checking (DRC) Circuit Extraction	
Design Rule Checking (DRC) Circuit Extraction Layout versus Schematic (LVS) Build Analog Extracted View: Post Extraction Simulation	58 59 61 64 64
Design Rule Checking (DRC) Circuit Extraction Layout versus Schematic (LVS) Build Analog Extracted View:	58 59 61 64 64
Design Rule Checking (DRC) Circuit Extraction Layout versus Schematic (LVS) Build Analog Extracted View: Post Extraction Simulation Put in the Pad frame and Extraction Simulation: Simulation for the Slew Rate:	58 59 61 64 65 69 78
Design Rule Checking (DRC) Circuit Extraction Layout versus Schematic (LVS) Build Analog Extracted View: Post Extraction Simulation Put in the Pad frame and Extraction Simulation:	55 55 61 64 65 65 65 78

	.07
ection 1: Initial Design	87
ection 2: Getting started with Schematic Capture and Spice Simulation	
reating the schematic view:	89
mulation in Spectre Spice using the Affirma environment:	
r	ction 1: Initial Design ction 2: Getting started with Schematic Capture and Spice Simulation eating the schematic view: eating a symbol view: eating a test bench:

LIST OF FIGURES:

Figure 1: Leaf	f Cell in Pad Frame	7
	f Cell block	
	ble Schematic	
	ingle Transistor	
	ng Examples for PMOSs.	
	mple current mirror array for a current steered DAC.	
	mple OTA (Operational Transconductance Amplifier)	
Figure 9: Mak	ing a directory and listing the contents of a directory	6
	anging your present working directory.	
	arting CDS tools (icfbIC Front to Back)	
Figure 12: Th	e CIW window	7
	prary Manager	
Figure 14: W	here to go for the new project directory	8
	eating a Library1	
	pdated library manager showing LeafCell project directory1	
	p-up: Creating a new cell view	
Figure 18: Cre	eating a new schematic view	0
	lding an instance	
	owsing for components	
	oosing the right noncess	
	becifying the nmos needed	
Figure 24: Sta	imping down the nmos	2
Figure 25: Pla	icing the transistors in schematic	3
Figure 26: Ge	tting the instance "gnd"	3
	e Add Pin Form	
Figure 28: Cł	2.	4
Figure 29: Sta	amping down all the instances	5
Figure 30: Th	e completed schematic	5
	lding the wire names	
Figure 32: Wh	here to go for creating symbol from schematic	6
Figure 33: Th	e Cellview From Cellview Window	7
Figure 34: Cu	rrentMirror Symbol created by the system	7
Figure 35: Cre	eating a test bench2	8
Figure 36: Ad	Iding Current Mirror into the test bench	8 0
Figure 37: Sta	imping down the Current Mirror. into the test bench	9
Figure 37: Sta Figure 38: Sta	imping down the Current Mirror. into the test bench	9 9
Figure 37: Sta Figure 38: Sta Figure 39: Ad	Imping down the Current Mirror. into the test bench	9 9 0
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta	imping down the Current Mirror. into the test bench	9 9 0 0
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta	imping down the Current Mirror. into the test bench	9 9 0 1 1
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta	imping down the Current Mirror. into the test bench	9 9 0 1 1
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 44: Aff	imping down the Current Mirror. into the test bench. 2 imping Vdd & Gnd into the test bench. 2 iding the power supply. 3 imping down the power supply. 3 iding the current source. 3 imping down	9 9 0 1 1 2 3
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 44: Aff Figure 45: Sin	imping down the Current Mirror. into the test bench. 2 imping Vdd & Gnd into the test bench. 2 iding the power supply. 3 iding the current source. 3 imping down the current source. 3 imping dow	9 9 0 1 1 2 3 3
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 45: Sin Figure 46: Ch	Imping down the Current Mirror. into the test bench. 2 Imping Vdd & Gnd into the test bench. 2 Iding the power supply. 3 Iding the current source. 3 Imping down the current source. 3 Imping dow	9 9 0 1 1 2 3 4
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Sin Figure 45: Sin Figure 46: Ch Figure 47: Set	imping down the Current Mirror. into the test bench. 2 imping Vdd & Gnd into the test bench. 2 iding the power supply. 3 imping down the power supply. 3 iding the current source. 3 imping down	9 9 0 1 1 2 3 4 4
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 45: Sin Figure 46: Ch Figure 48: Set	imping down the Current Mirror. into the test bench. 2 imping Vdd & Gnd into the test bench. 2 iding the power supply. 3 iding the current source. 3 iding the current source. 3 imping down the current source. 3 ifrima Analog Environemt 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 iting up the model path. 3 ting up the transient analysis 3	$9 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 3 \\ 4 \\ 4 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1 \\ 2 \\ 1 \\ 1$
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Sin Figure 46: Ch Figure 47: Set Figure 48: Set Figure 49: cho	Imping down the Current Mirror. into the test bench. 2 Imping Vdd & Gnd into the test bench. 2 Iding the power supply. 3 Iding the current source. 3 Iding the current source. 3 Imping down the	$9 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Sin Figure 45: Sin Figure 46: Ch Figure 47: Set Figure 49: chc Figure 49: chc Figure 50: Set	Imping down the Current Mirror. into the test bench 2 Imping Vdd & Gnd into the test bench 2 Iding the power supply 3 Imping down the power supply 3 Iding the current source. 3 Imping down the	$9 \\ 0 \\ 0 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 4 \\ 4 \\ 5 \\ 5 \\ 6 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Sta Figure 45: Sin Figure 46: Ch Figure 47: Set Figure 48: Set Figure 49: chc Figure 50: Set Figure 51: Set	Imping down the Current Mirror. into the test bench 2 Imping Vdd & Gnd into the test bench 2 Iding the power supply 3 Imping down the power supply 3 Iding the current source. 3 Imping down the	990011233445567
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Aff Figure 45: Sin Figure 45: Sin Figure 46: Ch Figure 47: Set Figure 48: Set Figure 50: Set Figure 51: Set Figure 52: Aff	mping down the Current Mirror. into the test bench 2 mping Vdd & Gnd into the test bench 2 Iding the power supply 3 mping down the power supply 3 Iding the power supply 3 Iding the current source. 3 mping down the current source. 3 e completed test bench 3 frima Analog Environent 3 nulator/Directory/Host 3 itting up the model path 3 oosing the da analysis 3 object test of the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the the canalysis 3 fitting up for the rest of the da analysis 3 fit	9900112334455677
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Ch Figure 45: Sin Figure 45: Sta Figure 47: Set Figure 49: chd Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply. 3 mping down the power supply. 3 Iding the current source. 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environemt 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 ting up the dransient analysis 3 oosing the dc analysis 3 ting up the transient analysis 3 firma window after setting up the analyses. 3 firma window after setting up the analyses. 3	99001123344556778
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 44: Aff Figure 45: Sin Figure 45: Sin Figure 47: Set Figure 48: Set Figure 50: Set Figure 51: Set Figure 53: Sel Figure 54: a co	mping down the Current Mirror. into the test bench 2 mping Vdd & Gnd into the test bench 2 Iding the power supply 3 mping down the power supply 3 Iding the power supply 3 Iding the current source. 3 mping down the current source. 3 e completed test bench 3 frima Analog Environent 3 nulator/Directory/Host 3 itting up the model path 3 oosing the da analysis 3 object test of the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the da analysis 3 fitting up the transient analysis 3 fitting up the da analysis 3 fitting up the the canalysis 3 fitting up for the rest of the da analysis 3 fit	990011233445567788
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 45: Sin Figure 45: Sin Figure 45: Sta Figure 48: Set Figure 49: cho Figure 50: Set Figure 51: Set Figure 53: Sel Figure 54: a c Figure 55: Yes	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply. 3 mping down the power supply. 3 Iding the current source. 3 imping down the current source. 3 indication of the current source. 3 indication of the complete test bench. 3 indication of the down of the source. 3 indication of the down of the source. 3 indication of the down of the source. 3 iting up the model path. 3 iting up the dc analysis. 3 i	9900112334455677889
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 45: Sin Figure 45: Sin Figure 45: Sta Figure 47: Set Figure 48: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 54: a c Figure 55: Ye: Figure 56: Ou	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply. 3 mping down the power supply. 3 Iding the current source. 3 imping down the current source. 3 e completed test bench. 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 titing up the model path. 3 titing up the dc analysis. 3 titing up the dc analysis. 3 firma window after setting up the analyses. 3 getting up for the rest of the dc analysis. 3 firma window after setting up the analyses. 3 oomplete Affirma window. 3 s to Warning. 3	99001123344556778899
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 43: Sta Figure 44: Aff Figure 45: Sin Figure 48: Set Figure 49: chc Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 53: Sel Figure 55: Ye: Figure 56: Ou Figure 57: Bu Figure 58: Cr	mping down the Current Mirror. into the test bench 2 mping Vdd & Gnd into the test bench 2 Iding the power supply 3 mping down the power supply 3 Iding the current source. 3 mping down the current source. 3 e completed test bench 3 frima Analog Environemt 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 coosing the dc analysis 3 oting up the dc analysis 3 string up the dc analysis 3 firma window after setting up the analyses 3 setting the pins. 3 ooplete Affirma window. 3 s to Warning 3 upt Graphic. 3 upt Graphic. 3 upt Graphic. 3	9900112334455677889912
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 43: Sta Figure 44: Aff Figure 45: Sin Figure 46: Ch Figure 50: Ste Figure 50: Ste Figure 51: Ste Figure 52: Aff Figure 53: Sel Figure 53: Sel Figure 55: Yee Figure 56: Ou Figure 57: Bu Figure 58: Cr Figure 59: Lay	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply 3 mping down the power supply. 3 iding the current source. 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environemt 3 oosing the right design to simulate. 3 oosing the right design to simulate. 3 ting up the model path. 3 ting up the transient analysis 3 oosing the canalysis 3 ting up for the rest of the dc analysis. 3 firma window after setting up the analyses 3 oeting the pins. 3 omplete Affirma window. 3 s to Warning. 3 upture Graphic. 3 upture Hore set of the dc analysis. 3 upture Graphic. 3 upture Graphic. 3 upture	99001123344556778899122
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Ch Figure 45: Sin Figure 46: Ch Figure 47: Set Figure 48: Set Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 55: Yei Figure 55: Yei Figure 57: Bu Figure 58: Cr Figure 59: Lay Figure 60: LS	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply 3 mping down the power supply 3 iding the current source. 3 ge completed test bench. 3 frima Analog Environemt 3 nulator/Directory/Host. 3 aoosing the right design to simulate. 3 ting up the model path. 3 stoing up the transient analysis 3 soosing the da analysis 3 stoing up the da analysis 3 stow of the rest of the da analysis 3 stow of the pins. 3 omplete Affirma window 3 stow darker setting up the analyses 3 ding up to for the rest of the da analysis 3 stow of the pins. 3 omplete Affirma window 3 stow darker setting up the analyses 3 output Gaphic. 3 output Gaphic. 3 stow darker setting up the current Mirror. 4 weating a layout view	990011233445567788991223
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 44: Aff Figure 45: Sin Figure 47: Set Figure 48: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 52: Aff Figure 53: Sel Figure 55: Ye: Figure 55: Ye: Figure 56: Ou Figure 57: Bu Figure 58: Cr Figure 59: Lay Figure 60: LS'	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 lding the power supply 3 mping down the power supply 3 ding the current source. 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environemt 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 sooing the danalysis. 3 ting up the transient analysis. 3 oosing the danalysis. 3 firma window after setting up the analyses. 3 setting the pins. 3 output Graphic. 3 ubble schematic of the CurrentMirror. 4 wout Editor. 4 W 4 W 4	9900112334455677889912233
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 44: Aff Figure 45: Sin Figure 46: Ch Figure 47: Set Figure 48: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 55: Ye: Figure 55: Ye: Figure 56: Ou Figure 57: Bu Figure 57: Bu Figure 58: Cr Figure 59: Lay Figure 60: LS' Figure 61: Set Figure 62: Ad	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply 3 mping down the power supply 3 iding the current source. 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environemt 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path 3 ting up the transient analysis 3 oosing the d canalysis. 3 ting up the transient analysis 3 oright he pins. 3 oright he pins. 3 oright he pins. 3 oright he pins. 3 opplete Affirma window. 3 s to Warning. 3 uput Graphic. 3 uput Editor 4 traing a layout view	9 9 0 0 0 1 1 2 3 3 4 4 5 5 6 7 7 8 8 9 9 1 2 2 3 3 4
Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 44: Aff Figure 45: Sin Figure 46: Ch Figure 47: Set Figure 48: Set Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 55: Yet Figure 55: Yet Figure 56: Ou Figure 57: Bu Figure 57: Bu Figure 58: Cr Figure 59: Lay Figure 61: Set Figure 62: Ad Figure 63: stat	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply. 30 Iding the current source. 3 mping down the current source. 3 e completed test bench. 3 mong down the current source. 3 frima Analog Environent 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 ting up the danalysis 3 oosing the danalysis 3 ting up the da analysis 3 sting up the da analysis 3 ongoing the da analysis 3 ting up for the rest of the dc analysis. 3 onplete Affirma window. 3 s to Warning. 3 up the traphic 3 up the taphic. 3 up the taphic. 3 up the pins. 3 opplete Affirma window. 3 s to Warning. 3 up the taphic. 3 upub tacheratic of the CurrentMirror.	990011233445567788991223345
Figure 37: Sta Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 45: Sin Figure 45: Sin Figure 47: Set Figure 48: Set Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 53: Sel Figure 54: a c Figure 55: Yes Figure 55: Yes Figure 56: Ou Figure 57: Bu Figure 58: Cr Figure 59: Lay Figure 61: Set Figure 62: Ad Figure 63: staa Figure 64: Ch	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply 3 mping down the power supply 3 ding the current source. 3 e completed test bench. 3 frima Analog Environent 3 nulator/Directory/Host. 3 soosing the right design to simulate. 3 ting up the model path. 3 ting up the transient analysis 3 posing the canalysis 3 ossing the de analysis 3 ossing the rest of the de analysis 3 orighte pins. 3 orighte pins. 3 orighte pins. 3 ot Warning. 3 uptor Graphic. 3 ubble schematic of the CurrentMirror. 4 wW 4 W 4 mp down the LWS window. 4 up down the ALC. 4 opsing the I herk Strindow. 4	9 0 0 1 1 2 3 3 4 4 5 5 6 7 7 8 8 9 9 1 2 2 3 3 4 5 5 6 7 7 8 8 9 9 1 2 2 3 3 4 5 5 5 5 7 7 8 8 9 9 1 2 2 3 3 4 5 5 5 5 5 5 7 7 8 8 9 9 1 2 2 3 3 4 5
Figure 37: Sta Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 43: Th Figure 44: Aff Figure 45: Sin Figure 46: Ch Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 53: Sel Figure 54: a c Figure 55: Ye: Figure 57: Bu Figure 57: Bu Figure 59: Lay Figure 60: LS' Figure 61: Set Figure 62: Ad Figure 63: staa Figure 64: Ch	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply 3 mping down the power supply 3 Iding the current source. 3 e completed test bench. 3 rima Analog Environent 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 soosing the canalysis. 3 ting up the transient analysis. 3 oosing the est of the dc analysis. 3 iffirma window after setting up the analyses. 3 orighter Affirma window. 3 s to Warning. 3 uput Graphic. 4 uput Graphi	9900112334455677889991223345555
Figure 37: Sta Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 43: Th Figure 43: Ch Figure 43: Set Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 53: Sel Figure 55: Yee Figure 55: Cou Figure 57: Bu Figure 57: Bu Figure 58: Cr Figure 61: Set Figure 61: Set Figure 63: staa Figure 65: Crc Figure 66: Co	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 ding the power supply. 3 mping down the power supply. 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environemt 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 ting up the transient analysis 3 sooing the de analysis 3 ting up the doal path. 3 sting up the datalysis 3 firma window after setting up the analysis 3 firma window after setting up the analyses 3 stor Warning. 3 up the Graphic. 3 sto Warning. 3 up to the currentMirror. 4 wout Editor. 4 W 4 yout Editor. 4 mping down the ALC. 4 ating up the datalysing up the analyses. 4 mping up the datalysis 3 sto Warning.	990011233445556778899912233455556
Figure 37: Sta Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 43: Ch Figure 45: Sin Figure 47: Set Figure 50: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 53: Sel Figure 55: Yei Figure 55: Yei Figure 55: Yei Figure 56: Ou Figure 59: Lay Figure 61: Set Figure 62: Ad Figure 63: sta Figure 63: Sta Figure 65: Cre Figure 66: Co Figure 67: Co	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 Iding the power supply 3 mping down the power supply 3 Iding the current source. 3 e completed test bench. 3 rima Analog Environent 3 nulator/Directory/Host. 3 oosing the right design to simulate. 3 ting up the model path. 3 soosing the canalysis. 3 ting up the transient analysis. 3 oosing the est of the dc analysis. 3 iffirma window after setting up the analyses. 3 orighter Affirma window. 3 s to Warning. 3 uput Graphic. 4 uput Graphi	9900112334455567788999122334455567
Figure 37: Sta Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 41: Ad Figure 42: Sta Figure 43: Th Figure 43: Th Figure 43: Th Figure 44: Aff Figure 45: Sin Figure 47: Set Figure 57: Set Figure 51: Set Figure 52: Aff Figure 52: Aff Figure 53: Sel Figure 55: Yei Figure 55: Yei Figure 57: Bu Figure 58: Cr Figure 59: Lay Figure 60: LS Figure 61: Set Figure 62: Ad Figure 63: stai Figure 65: Cra Figure 65: Cra Figure 67: Co Figure 67: Co	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 ding the power supply. 3 mping down the power supply. 3 mping down the power supply. 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environent 3 oosing the right design to simulate. 3 ting up the model path. 3 ting up the ransient analysis 3 oosing the da analysis. 3 ting up for the rest of the dc analysis. 3 ting up for the rest of the dc analysis. 3 opplete Affirma window. 3 s to Warning. 3 upt Graphic. 4 wort each all store. 4 upt Graphic. 4 up for the rest of the dc analysis. 3 up for the rest of the dc analysis. 3 up for the rest of the dc analysis. 3 <t< td=""><td>99001123344556778899122334555677</td></t<>	99001123344556778899122334555677
Figure 37: Sta Figure 37: Sta Figure 38: Sta Figure 39: Ad Figure 40: Sta Figure 40: Sta Figure 42: Sta Figure 43: Th Figure 43: Th Figure 45: Sin Figure 44: Aff Figure 45: Sin Figure 47: Set Figure 50: Set Figure 51: Set Figure 52: Aff Figure 52: Aff Figure 53: Sel Figure 55: Ye: Figure 55: Ye: Figure 58: Cr Figure 59: Lay Figure 60: LS' Figure 61: Set Figure 62: Ad Figure 63: staa Figure 63: staa Figure 64: Ch Figure 65: Cro Figure 67: Co Figure 68: Gr	mping down the Current Mirror. into the test bench. 2 mping Vdd & Gnd into the test bench. 2 ding the power supply 3 mping down the power supply 3 mping down the current source. 3 e completed test bench. 3 frima Analog Environent 3 oscing the right design to simulate. 3 oscing the model path. 3 ting up the model path. 3 ting up the transient analysis 3 oosing the da analysis. 3 ting up for the rest of the da analysis. 3 ting up for the rest of the da analysis. 3 cetting the pins. 3 oomplete Affirma window. 3 s to Warning. 3 up out Editor 4 wetting a layout view. 4 yout Editor 4 Wetting Display Options. 4 ding the Leaf Cell Block into the layout. 4 mping down the LUC. 4 oosing the da analysis. 4 out Editor 4 wout Editor 4 wout Edito	990011233445567788991223345556778

	40
Figure 72: Inner connection for leaf I_refx4	
Figure 73: Signal routing for leaf I_ref_out	
Figure 74: Connecting the gates	
Figure 75: Creating label for signal I_ref_out	
Figure 76: Signal routing and labeling for I_refx2	
Figure 77: Signal routing and labeling for I_refx8	
Figure 78: Signal routing and labeling for I_ref_in.	
Figure 79: a) Gate connection between I_refx8 and I_ref_in. b) Signal routing and labeling for I_refx4.	
Figure 80: Zooming into the sources needed to be connected to gnd!	
Figure 81: Wiring the <i>gnd</i> net and label it "gndl"	
Figure 82: Adding the output pins	
Figure 83: Stamping the output pin 1_refx8	
Figure 84: Stamping the rest of output pins.	
Figure 85: Adding the input pin.	
Figure 86: Stamping down the input pin	56
Figure 87: Stamping down the ground pin	57
Figure 88: Running DRC	58
Figure 89: No DRC Errors	58
Figure 90: Running the Extractor.	59
Figure 91: Selecting Extract parasitic capacitances.	59
Figure 92: Extractor all set to go	60
Figure 93: Extracted current mirror with no errors	
Figure 94: Running an LVS Check	
Figure 95: Successful completion of an LVS check	61
Figure 96: Output the LVS information	62
Figure 97: Output of the LVS	
Figure 98: The right way to short NMOS to ground.	
Figure 99: The right way to short PMOS to vdd	
Figure 100: Display Run Information for debugging	63
Figure 101: Build Analog Extracted	
Figure 102: Extracted view of the current mirror.	
Figure 103: extracted environment setting	
Figure 104: extracted environment setting	
Figure 105: Adding the extracted environment.	
Figure 106: Post Extracted Simulation results.	
Figure 107: Getting the metal only	
Figure 108: Add instance ALC_PF, and then zoom in to one of the leaf cell	
Figure 109: Make a secondary copy of layout view for CurrentMirror	
Figure 110: Steps for selecting the metals from the leafcell layout.	
Figure 111: Steps for copying the metals from CurrentMirror_copy to CurrentMirror_PF.	
Figure 112: Connecting the I/O pins and gnd! to the pads	
Figure 113: Labeling the pads.	
Figure 114: Copying the schematic view and symbol view of the current mirror from cell CurrentMirror to cell CurrentMirror_PF	
Figure 115: Library Manager window after copying	
Figure 116: Running LVS for PF.	75
Figure 117: Running LVS for the PF	76
Figure 118: Build Analog for the PF	
Figure 119: Replacing the CurrentMirror in the test bench with CurrentMirror_PF	
Figure 120: Setting up the Affirma to simulate the PF	
Figure 120: Setting up the Affirma to simulate the PF	
Figure 122: Editing the current source.	
Figure 122: Edding in the load resistors	
Figure 12.5. Adding in the load resistors	
Figure 124: Setting up the Affirma for simulation	
Figure 125: Setung up the Affirma for simulation	
Figure 120: Step transient response waveform	
Figure 127: Octaing the slopes of the waveform Figure 128: Dipping in the other direction	
Figure 129: Waveform with high loads	
Figure 129: Waveform with high loads	
Figure 130: Will it Oscilates:	
Figure 135: Another way to layout the CurrentMirror	
Figure 132: Simulation waveform for the Current/Mirror faid out in figure 125 Figure 135: Parameter sizing for the OTA	
Figure 135: Parameter sizing for the OTA	
Figure 130: Create a new cell view for the OpAmp Figure 137: Adding and placing the instances	
Figure 137: Adding and placing the instances	
Figure 138: Adding and placing the instances	
Figure 139: Wiring up the OTA	
Figure 140: Creating OTA_tb	
Figure 142: Adding the OpAmp and stamping it down into the OTA test bench.	
Figure 143: Adding the OpAmp and stamping it down into the OTA test bench.	
Figure 144: Setting up the Vsin and Vdc for the two inputs to the OTA Figure 145: setting up the Affirma Form for simulation	
rigue 175. setung up the Arminia Form for simulatori.	

Figure 146:	setting up the Affirma Form for simulation	95
	Plotting the Bode Plot for the output terminal	
Figure 148:	Bode Plot is shown in section 2 in the waveform	97
Figure 149:	Setting up to show the DC operating points for the transistors	97
Figure 150:	Descend into the OpAmp for transistor operating points	98
	Descend OTA schematic view with transistor operating points.	
Figure 152:	Creating the test1 schematic to extract k'n	100
Figure 153:	test1 schematic	100
Figure 154:	Setting up for simulation for test1	101
Figure 155:	Test1 simulation waveform	101
Figure 156:	Creating vertical markers for intercepting datas	102
Figure 157:	Creating vertical markers for intercepting datas	102

Acknowledgements:

This tutorial is based on the NCSU design kit. For more information, see <u>http://www.ece.ncsu.edu/cadence/CDK.html</u>.

This tutorial also follows the design flow used by WPI at <u>http://vlsi.wpi.edu/cadence/</u>.

The Leaf Cell is designed and layout by Eric Basham.

Chapter

Chapter I: Introduction

Full custom IC design is very time consuming. In order for students to complete the whole custom IC design flow--design, fabrication, and testing within a regular semester class, we had design the Analog-leaf-cell. The ALC is a sea-of-gates semi-custom IC design approach that reduces design and fabrication time. The design time is reduced because the transistors are pre-placed and the novice designer only has to route one metal layer, and fabrication time is reduced because the transistors are pre-fabricated and only one metal layer has to be processed to complete the manufacture of an IC design. In this tutorial, we will show you the design of the Leaf-cell as well as a tutorial for simple analog design.

1. The Leaf Cell:

The leaf cell is designed to facilitate analog circuit design for Junior/Senior students who already have taken an introduction to current design and a solid state physics course in our Cadence IC design lab. It is intended as a teaching tool to introduce the student to the design, fabrication and test cycle without requiring extensive fabrication and layout resources. Additionally, general concepts of reconfigurable devices may be addressed during the design cycle.

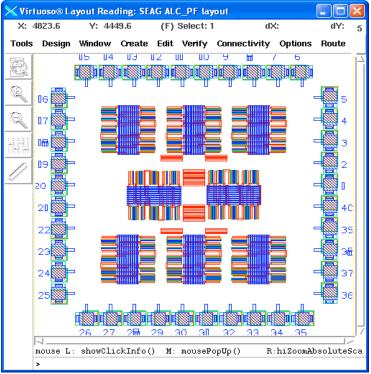
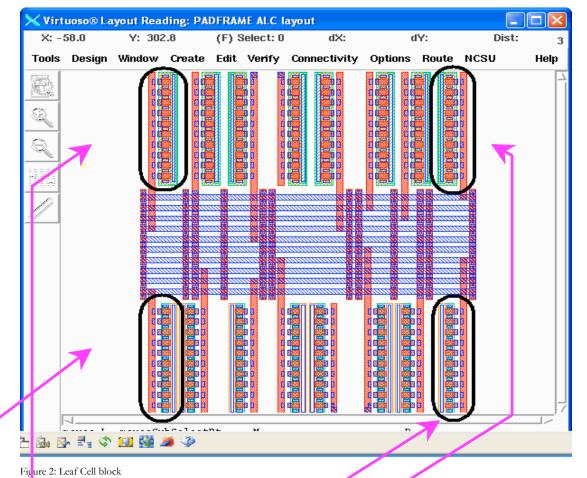



Figure 1: Leaf Cell in Pad Frame

There are Leaf Cells in a Pad Frame (Figure 1). Figure 2 shows one laid out Leaf Cell. There are 8 N transistors (bottom) and 8 P transistors (top). They are laid out in a predetermined, but not connected manner in order to guide your design and reduce the level of required layout for a functional design. The blue lines are the metal connectors and the red lines are poly connections.

Accordingly, Figure 3 shows the blank wiring diagram (bubble schematic) of a block of Leaf Cell.

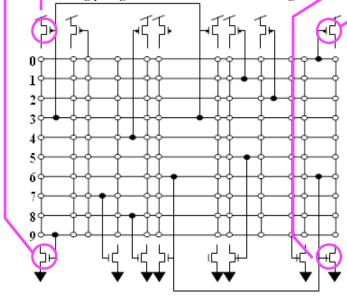
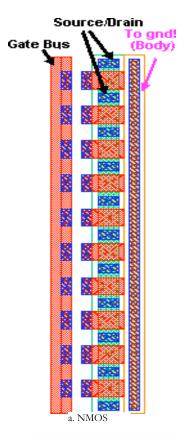
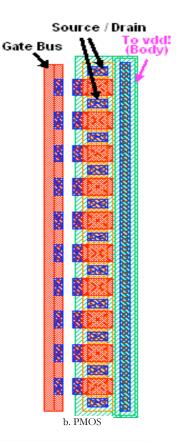


Figure 3: Bubble Schematic

Each empty bubble represents а connection that can be made between the wires that run vertically and the wires that run horizontally; each solid bubble is a hard wired connection. Transistor gates are connected to an individual wire running horizontally by a short wire running vertically. Since there are two sets of transistors with gates connected to the same horizontal bus, there are 5 horizontal bus lines for P transistors (0-4) and 5 horizontal bus lines for N \transistors (5-9). As part of the design process you will have to determine which horizontal busses are inputs, outputs, power and ground.

How to size:

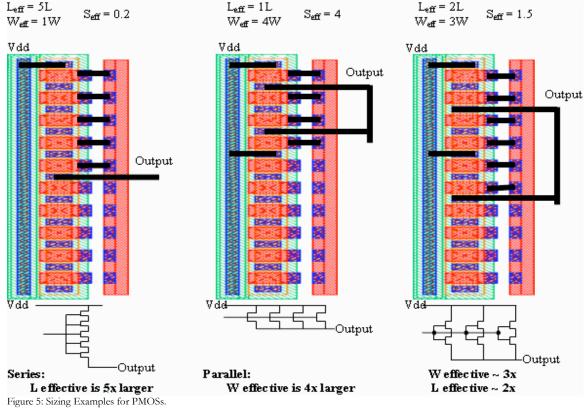

Figure 4: A Single Transistor

Figure 4 shows a bank of 10 transistors with $W=L=6.4 \mu m$ that can be configured in series or parallel. The contacts are predefined and covered with metal to allow you to make connections between the poly layers. The metal bus on the left is Source and the right bus is the drain.

Sizing is really as simple as shorting the metal contact connections together to make either transistor in parallel or transistors in series.

Figure 5 shows some examples of how to perform sizing on PMOSs. In this case all the transistors' sources are connected to Vdd (PMOS) and the outputs are the drain bus on the left, but this is not the only method of connection. The thin green lines show the transistors, the thick blue lines show the metal connections you will add.

2. Leaf Cell Parameters:

Since the Leaf Cell is designed for analog, the minimum sizes of W and L of both the PMOS and NMOS are designed to be the same, which is **6.4** micro meter. In this way, the ratio S = W / L can be easily determined and then laid out. Table 1 lists some of the important parameters of the Leaf Cell for reference.

Parameter (unit)	Value
W _N Minimum (m)	6.4x10-6
L _N Minimum (m)	6.4x10 ⁻⁶
TOX (m)	3.04x10 ⁻⁸
$\mu_{\rm N}$ (cm ² /Vs)	640.04
CGDO (F/m)	2.7x10 ⁻¹⁰
CGSO (F/m)	2.7x10 ⁻¹⁰
CJSW (F/m)	1.465x10 ⁻¹⁰
CJ (F/m ²)	2.806x10-4
VT (V)	0.58
Length of Source or Drain (m)	4.8x10-6
K' / 2 (uA/V ²)	36.95

Table 1: Leaf Cell Parameters (Tech File: AMI 1.6):

Parameter (unit)	Value
W _P Minimum (m)	6.4x10 ⁻⁶
L _P Minimum (m)	6.4x10-6
TOX (m)	3.04x10 ⁻⁸
μ_P (cm ² /Vs)	268.45
CGDO (F/m)	2.7x10 ⁻¹⁰
CGSO (F/m)	2.7x10 ⁻¹⁰
CJSW (F/m)	1.464x10 ⁻¹⁰
CJ (F/m ²)	2.960x10 ⁻⁴
VT (V)	-0.806
Length of Source or Drain (cm)	4.8x10-6
K' / 2 (uA/V ²)	-15.50

3. Design Flow

The design flow for using the Leaf Cell deviates slightly from the normal bottom-up IC design flow in that the transistors have already been laid out in a predetermined pattern. Only metal1 needs to be drawn upon the Leaf Cell to finish any designs. This is called a semi-custom approach.

Initial Design

In the initial design phase, you decide the specification of the circuit. You then size the widths and lengths of the transistors by ratios as needed for your analog design. You would also draw the circuit schematic out on paper and develop the test vectors to prove that your design will work.

Schematic Capture

You then enter in the schematic and symbol for your circuit, and create a test bench for simulation. You simulate the circuit to make sure it functions properly, and it meets the time and power specifications. Since analytical equations are not as accurate as spice simulations, you might need to change the widths (in this case, we change the S ration) of the PMOS and NMOS transistors for you to meet your specifications.

Pre - Layout

Once the schematic has met your specifications, you use the leaf cell bubble schematic to plan how to wire the circuit together. This is the critical step because you need to look at the leaf cell tree and design which N/P MOS you want to use, as well as the joints that need to be connected.

Layout

Referring to your bubble graph plan, in Cadence layout tools you draw out how the circuit would look under a microscope. These pictures are used to make the photolithography masks that are used to define your circuit on silicon. In this design flow, you may only add metal1.

Design Rule Checking

Once the circuit is laid out, you have to complete a design rule check to make sure that the circuit will not have yield problems when it is fabricated.

Circuit Extraction

Once you have laid out a circuit you need to extract its electrical properties to make sure that you drew the correct functionality and to estimate the parasitic resistances and capacitances that degrade circuit performance. The extracted view can be sent to the simulator.

Layout versus Schematic

Once you have an extracted view of your circuit, you need to run a layout versus schematic check. This makes sure that the electrical properties of your schematic match those of your extracted view. This is faster than running all your test vectors on the extracted view that you did on the schematic view.

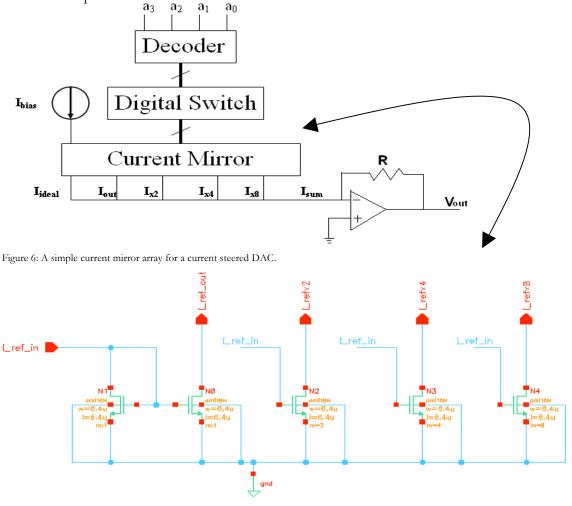
Post Extraction Simulation

Once you make sure that the circuits are equivalent, you run the simulation again using the extracted view. This will take into account parasitic caps. You might have to change the widths of your transistors slightly to match your specification. The problem at this point is that you have to change the drawing now to change the transistor and then re-extract the circuit to finally meet your spec. Then you have to go back and change your schematic as well. The better job you do at predicting circuit performance at the initial design stage and schematic capture stage, the less re-work you have to do at the layout stage.

Fabrication and Test

For the final step, fabrication test, the leaf cell can be fabricated first in the lab prior to the completion of the students' designs. After the students designs are completed, the last mask, which is only the mask of the wire connection, can then be finished up for testing.

Once the circuit comes back from fabrication, you test it using the test vectors you developed earlier. If the circuit does not meet specification you have to start the process at the beginning using the feedback you received from the actual devices that were made to modify your design.


4. Applications:

In the following two Chapters, we will go through two semi-custom analog designs, a simple current mirror array for a current steered DAC, and a simple OTA (Operational Transconductance Amplifier).

Design 1: Current Mirror:

Current mirrors are widely used in analog integrated circuits. They are used as biasing elements to minimize the dependencies of circuit performance to the variation of power supply and temperature; they are also used as load devices for amplifier stages to result in high voltage gain at low supply voltage. Ideally, the output current of a current mirror is equal to the input current multiplied by a desired current gain. Is it true in practice? Unfortunately, you will notice it is not true in the simulation part of the tutorial.

Figure 6 shows a 4-bit current steered DAC. It has a current mirrors that have binary weights assigned to each current mirror (used as a source) corresponding to the position of the bit. Therefore, a 4 bit DAC would have 4 current mirrors with the current equals to its bit position times the reference current. A step by step semi-custom design of this current mirror will be shown in Chapter 2.

Design 2: OTA:

The operational transconductance amplifier (OTA) is basically an op-amp without an output buffer, so that it can only drive capacitive loads. OTA can also be defined as an amplifier where all nodes are low impedance except the input and output nodes.

OTAs are very useful in CMOS analog circuit design. There are two practical concerns when designing an OTA for filter applications. One is the input signal amplitude. Large signals can cause the OTA gain to become nonlinear. Another is the parasitic input/output capacitances. The external capacitance should be large compared to the input/output parasitic therefore it limits the maximum frequency of the filter and it causes amplitude or phase error which can usually be tuned out with proper selection of I_{BLAS} .

Figure 7 shows a simple OTA, and we will see how it works out in Chapter 3.

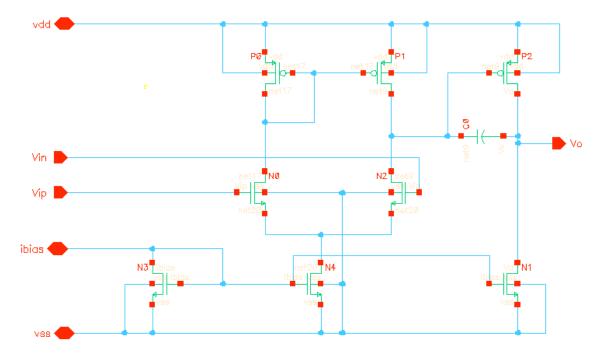


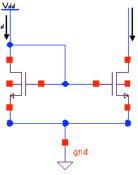
Figure 7: A simple OTA (Operational Transconductance Amplifier).

Chapter

Chapter 2: A Current Mirror Tutorial

Section 1: Initial Design

Design specification:


The steered currents need to be within 5% of the multiples of the reference current. Vdd is 2.5V.

Hand Calculation:

In this case, since the ratios of W and L are integers, and Vdd is fixed, the only element we can control is Id. In order to have the steered currents within 5% error, we need to do some calculation to pick the right I_{bias} .

For CMOS, the current equation is:

$$I_{d} = \frac{\mu_{n}C_{ox}}{2} \bullet \frac{W}{L} \bullet \left(V_{gs} - V_{t}\right)^{2}$$

Plugging in the parameters, we have $Id = 79.52858\mu A$. Therefore, we choose $Id=80 \mu A$, plugging into the following equation:

$$V_{dd} = V_{gs} = V_t + \sqrt{\frac{Id}{K' \bullet W/L}}$$
 , we have:

W/L	1	2	4	8
ld (μA)	80	160	320	640
Vgs	2.505653	2.505653	2.505653	2.505653
error	0.23%	0.23%	0.23%	0.23%

Getting started with the Tool:

Open the Terminal:

Your account should have the all paths set to run the software. You need only to log in and start a terminal. There should be a terminal icon on your Common Desktop Environment. (If you can't find it, you can right click the mouse and look for *Terminal* to open it.)

Just double click on it and a command window will appear (Figure 8.). You type commands in this window just like an MSDOS command line except that the commands are different.

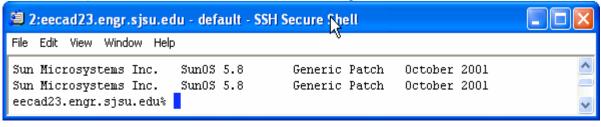


Figure 8: The terminal

Create a Project Directory:

To do this, type the command *mkdir LeafCell* at the command line (Figure 9). This command makes a directory LeafCell in your home directory. You only have to create this directory once! Type the command *ls*. You should see a directory with the name just created as in Figure 9. The command *ls* lists out the content of your present working directory.

🕮 1:eecad23.engr.sjsu.edu - default - SSH Secur	e Shell	
File Edit View Window Help		
eecad23.engr.sjsu.edu% eecad23.engr.sjsu.edu% mkdir LeafCell eecad23.engr.sjsu.edu% ls		•
AdobeFnt.lst LeafCell eecad23.engr.sjsu.edu%	go athena	>

Figure 9: Making a directory and listing the contents of a directory.

In order to start the CDS tools so that your project files are available, you need to go into your project directory before starting the tools. Type in the command *cd LeafCell* at the command line. This changes your present working directory to *LeafCell*. If you type the command *ls*, you should see no files inside that directory (Figure 10.).

🕮 2:eecad23.engr.sjsu.edu - default - SSH Secure Shell	
File Edit View Window Help	
eecad23.engr.sjsu.edu% cd LeafCell eecad23.engr.sjsu.edu% ls eecad23.engr.sjsu.edu%	<

Figure 10: Changing your present working directory.

Start CDS Tools:

Type in the command *icfb* &. You should see messages similar to Figure 11. After some time, the *CIW* (Command Interface Window) will pop up (Figure 12). Once the CIW come up, you will not need to use the command line.

🥮 1:eecad23.engr.sjsu.edu - default - SSH Secure Shell	
File Edit View Window Help	
eecad23.engr.sjsu.edu% cd LeafCell eecad23.engr.sjsu.edu% icfb%	~
[1] 716 eecad23.engr.sjsu.edu% sh: /usr/bin/X11/xIsfonts: not found	~

Figure 11 : Starting CDS tools (icfb---IC Front to Back).

Xicfb - Log: /graduate	/ng829725/CDS.log	N		
File Tools Options T	echnology File	М		Help 1
Loading /apps/cadence, Loading layers.cxt Loading NCSU SKILL rot END OF SITE CUSTOMIZA		lotinit		
mouse L:	М:		R :	
>				

Figure 12: The CIW window.

Summary of Starting up CDS Tools:

Now that you have created your project directory, whenever you want to work on the design in that directory you just have to:

- 1. Log in
- 2. Start a terminal
- 3. Type in the command, *cd LeafCell* (or the name you selected for your project)
- 4. Type in the command, *icfb* &.

Section 2: Getting started with Schematic Capture and Spice Simulation

Design entry through schematic capture:

We will be using the NCSU design kit which automatically starts the library manager (Figure 13.) You should see several NCSU libraries (*NCSU_Analog_Parts, NCSU_Digital_Parts, and NCSU_Sheet_8ths*), as well as libraries named *ANALOG, analogLib, avTech, basic, cdsDefTechLib,* and PADFRAME

🗽 Library Manager: WorkArea	: /home/shao/LeafCell	la contraction of the second s	
<u>File E</u> dit <u>V</u> iew <u>D</u> esign	Manager	.0	<u>H</u> elp
_ Show Categories _ :	Show Files		
Library	Cell	View	
		1	
ANALOG NCSU_Analog_Parts NCSU_Digital_Parts NCSU_Sheets_8ths NCSU_TechLib_ami16 PADFRAME analogLib avTech basic cdsDefTechLib			
— Messages —			
	nager customizationsdo /LeafCell/libManager.log"		

Figure 13: Library Manager

Creating a new library:

We need to create a project library and attach a technology library to it.

To create your new project library:

1. Go to the *icfb* window (or library manager window), and go to: *File... New...Library* (Figure 14). A pop-up window should appear.

🗙 icfb - Log: /graduate/ng829725/CDS.log								
File Tools Options	Technology File	Help	1					
New r	Library Is/plot/.cdsplotinit		- 2					
Open 📶	Cellview							
lmport 🦯			7					
Export -								
1 Refresh	M: R:							
Make Read Only								
What's New								
Exit								

Figure 14: Where to go for the new project directory.

2. Fill out the form exactly according to Figure 15. Make sure to click on *attach tech library*.

Create Library		x
OK Cancel Apply		Help
Library		
Name: LeafCell		
Path: I		
Technology Library		
, , ,	gn (i.e., layout) data you do not need a tech library.	
Otherwise, you must either attach to an ex Choose option:	kisting tech library or compile one.	
2 No tech library needed	3	
Attach to existing tech library	AMI 1.6u ABN (2P, NPN)	
Compile tech library	AMI 0.60u C5N (3M, 2P, high-res)	
v 1 2	HP 0.60u AMOS14TB (3M, sblock, thin-ox cap)	
	TSMC 0.40u CMOS035 (4M, 2P, HV FET)	
Misc.	TSMC 0.40u CMOS035d	
I/O Pad Type:	TSMC 0.30u CMOS025 Area TSMC 0.24u CMOS025d	
- The same and the part of the same	Carry and the second and the second second	toman ?

Figure 15: Creating a Library

- 3. Find the "AMI 1.6u ABN (2P, NPN)" tech library, choose it and click OK.
- 4. Your library manager should now show your new project directory as in Figure 16.

🗽 Library Manager: WorkArea: /home/shao/LeafCell						
<u>File E</u> dit <u>V</u> iew <u>D</u> esign M	anager	.0	<u>H</u> elp			
_ Show Categories Sh	ow Files					
Library	Cell	View				
	Ĭ.	Ĭ.				
ANALOG LeafCell NCSU_Analog_Parts NCSU_Digital_Parts NCSU_Sheets_8ths NCSU_TechLib_ami16 PADFRAME analogLib avTech basic cdsDefTechLib						
Messages						
Loading NCSU Library Mana Log file is "/home/shao/Lo 	ger customizationsdo eafCell/libManager.log'	one. '-				

Figure 16: Updated library manager showing LeafCell project directory.

Creating a schematic view:

After creating the library LeafCell, we can now start adding views into it. Each design will have different views. For example, one set of views includes a schematic, symbol, layout, and extracted views. There can be more depending on the application.

To create a schematic view:

1. Go to the library manager window, click at the *LeafCell* library, and then go to: File... New... Cell View. A pop-up like Figure 17 should appear.

× Create	🗙 Create New File 🛛 🛛 🔀						
ок	OK Cancel Defaults						
Library N	lame	LeafC	iell 💷				
Cell Name	Cell Name						
View Nan	View Name						
Tool	_	Virtuos	;o				
Library path file							
/graduate/ng829725/LeafCell/cds.lib							

× Create	New File	2		×		
ок	Cancel	Defaults		Help		
Library N	ame _	LeafCell				
Cell Name	Name CurrentMirror					
View Nan	View Name schematic					
Tool Composer-Schematic _						
Library path file						
/graduate/ng829725/LeafCell/cds.lib						

Figure 17: Pop-up: Creating a new cell view

Figure 18: Creating a new schematic view

- 2. Fill out the form exactly according to Figure 18.
- 3. Click OK. The Virtuoso Schematic Editing window should appear.

Adding the Transistors:

To add instance to the schematic, go to Add... Instance in the schematic window, or press the letter 'i' key from your keyboard. The Add Instance window appears as in Figure 19.

	👝 🔀 Component Browser 📮 🗖 🔀
Add Instance	Commands Help 3
Hide Cancel Defaults He	elp Library ANALOG
Library I Brow	se Flatten
Cell I	Filter
View symbol ⁱ	
Names	Uncategorized layout_macros
Array Rows <u>1</u> Columns <u>1</u>	sym_contacts sym_pins
Rotate Sideways Upside Dov	

Figure 19: Adding an instance

Figure 20: Browsing for components

Click on *browse* to graphically get components. A pop-up like Figure 20 should appear.

Component Browser	Component Browser Commands Help 3
Library NCSU_Analog_Parts Flatten _	Library <u>NCSU_Analog_Parts</u> Flatten <u></u>
Filter * Uncategorized CONTENTS Current_Sources Diodes H_Spice_Only Microwave_Parts Misc Parts N_Transistors P_Transistors R_L_C	Filter *

Figure 21: Choosing the right folders

Figure 22: Getting the right nmos.

To get the parts we need, change the library to NCSU_Analog_Parts (Figure 21).

Click on *N_transistors* and the pop-up should look like Figure 22.

Click on *nmos4*. The Add *Instance* window will then change, as in Figure 23.

🗙 Add In	stance					×	
Hide	Cancel	Defaults			l	Help	
Library Cell	NCSU_An	alog_Partš			Brows	∎Ĩ	
View Names	symbol <u>i</u>				ĸ		Number filled here indicates the number of transistors (with indicated size in this
Array		Rows 1		Columns	1		form) placing one next to another, sharing source or drain.
Rotate Model nav Model Tyj	110	Sidev	ami161		lpside Dow		In this case, we use: 1 for I_ref_in I_refx1, 2 for I_refx2, 4 for I_refx4, so on and so forth.
Multiplier Fingers Width (gri			1 1 16				Minimum transistor width for our attached tech library
Width Width (mi	niman)		6.4u M 4u M	Ú.		1	
Length (g	rid units)		16				Minimum transistor length for our attached tech library
Length Length (m	nisiam(aus)		6.4u 1 1.6u 1			1	

Figure 23: Specifying the nmos needed.

Make sure you use the right sizes and multiplier, and then stamp it down as in Figure 24.

🗙 Virt	uoso®	Sche	matic	Editin	g: Lea	fCell cu	irrent		\mathbf{X}
Cmd	:		Sel:	0					11
Tools	Desi	jn W	findow	Edit	Add	Check	Sheet	Options	
M					.	10			7
						imi161			
\mathbb{R}^2					<u> </u>	v=6. =6.4			
\mathbb{R}^2					•	n:1]/
	√ mouse	L:sh	owClic	kInf	⊥ M:sch	HiMous	ePo R:h:	i2JomRela	ati
igure 24: S	>	own the	e nmos						

Turned Sideways. --To Rotate, or turn the object Sideways or Upside Down, go back to the Add Instance form, and click on the appropriate button in the middle of the form. After adjusting the sizes and number of multiplier for different transistors, place the transistors into the schematic as in Figure 25.

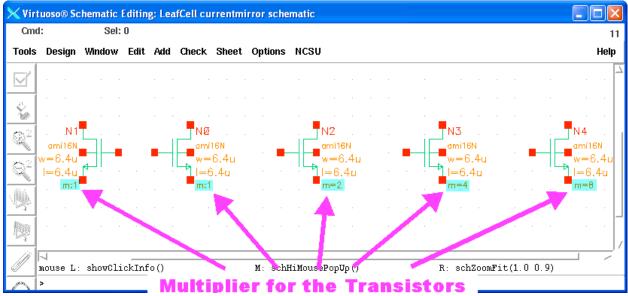


Figure 25: Placing the transistors in schematic

If you make a mistake and need to get out of adding instance mode, press the **esc** key from your keyboard, and start from the Add Instance window again.

Adding the gnd net:

Open the Add Instance window, and then the Component Browser. Click into the Supply net instead, and then you will see the gnd as in Figure 26.

🗙 Compone	nt Browser 📃 🗖	
Commands	Help	7
Library	NCSU_Analog_Pa	arts
Flatten		
Filter	*]
(Go gnd gnda gndd oscpor powerS vcc vdda		
Supply	Nets	4
N		

Figure 26: Getting the instance "gnd"

Note: The items in supply nets are actually global signals. Global signal are automatically given pins. This makes our symbols cleaner because we only show logic ports.

Adding Pins:

To add the input and output pins, go to Add... Pins and a pop up like Figure 27 should appear. Fill it out exactly like Figure 27. The pins names must match the pins names in the symbol view we are going to create later. If they do not match (directionally or namely), the design, check & save routine will fail.

🔀 🗚 🗡)				
Hide	Cancel	Defaults		Help	
Pin Names I_ref_in I_refx8 I_refx4 I_refx2 I_ref_out					
Direction		input	💷 🛛 Bus Expa	nsion 🔶 off 🗸 on	
Usage		schematic _	Placemen	nt 🔹 🔶 🔷 🔶 🔶 🔶 🔶 🕹	
Rotate			Sideways	Upside Down	

Figure 27: The Add Pin Form.

Stamp down the input pin *l_ref_in*. Right click the mouse to rotate the pin as you want. Then go back to the form, change the *direction* from *input* to *output* for the rest of the pins in the *Add Pin* form as in Figure 28.

🗙 Add Pi	in	×
Hide	Cancel Defaults	elp
Pin Name	s I_refx8 I_refx4 I_refx2 I_ref_out	_
Direction	input 🔄 Bus Expansion 🔶 off 🗸 on	
Usage	output inputOutput Placement	9
Rotate	e Sideways Upside Dov	vn

Figure 28: Changing direction for the Y pin.

Stamp them down. The schematic will then look like Figure 29.

Adding wires:

What is left is to wire up the transistors.

To add a wire, press W from keyboard. The wire will snap to place at the proper ports of each device. Wire it up like Figure 30.

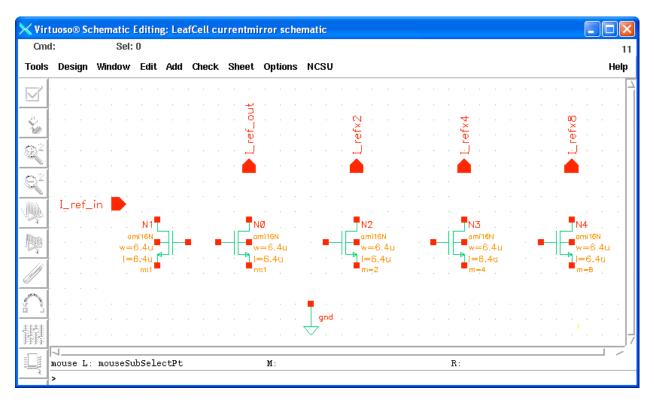


Figure 29: Stamping down all the instances

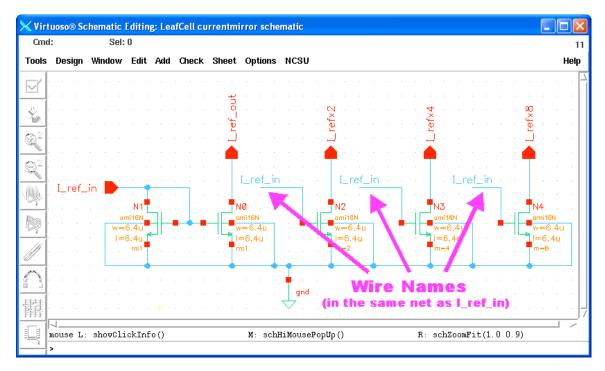
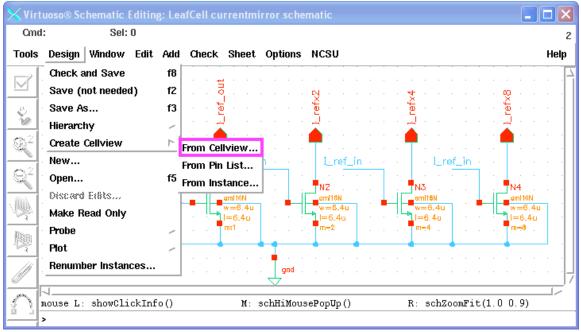


Figure 30: The completed schematic.

To add wire names, go to Add...Wire Name..., the Add Wire Name window will pop up as in Figure 31.

🗙 Add Wire I	Name	
HideCa	ncel Defaults	Help
Names	I	
Font Height	0.0625	Bus Expansion 🔶 off 🗸 on
Font Style	stick _	Placement \bullet single \checkmark multiple
Justification	lowerCenter 🖃	Purpose 🔶 label 🗸 alias
Entry Style	fixed offset 💷	Show Offset Defaults
Rotate		


Figure 31: Adding the wire names.

Fill in the names, and then stamp down on top of the wire with that coordinate name, as shown in Figure 30 above.

To save and check your schematic for errors, go to *Design... Check & Save*. Any errors will be highlighted in the schematic window. If so, it is usually something not connected, or a port name is wrong. Fix these error(s) before continuing.

Creating a symbol view:

There are many ways to create a symbolic view. The easiest way is to let the system create it from the schematic view. To create a symbol view:

1. Go to the schematic window and go to Design...Create Cellview...From Cellview... (Figur 32).

- Figure 32: Where to go for creating symbol from schematic.
- 2. The Cellview From Cellview window will pop-up as in Figure 33. Click OK. The Virtuoso Symbol Editing window should appear with the symbol made by the system (Figure 34).

🗙 Cellvi	ew From (Cellview			
ок	Cancel	Defaults Apply			Help
Library N	lame	LeafCell			Browse
Cell Nam	e	currentmirror			
From Vie	w Name	schematic 💷	To View Name	symboli	
			Tool / Data Type	Compos	er-Symbol 💷
Display (Cellview	■ •			
Edit Opti	ions	F			

Figure 33: The Cellview From Cellview Window.

🗙 Vir	tuoso® Sy	ymbol Edit	ting: LeafC	ell Curre	entMirror sym	bol		
Cm	d:	Sel:	0					24
Tools	Design	Window	Edit Add	Check	Options			Help
\$								
ę-							. [@ins tanceNo	ime]
	🛑	— Lre	ef_in			I_ref_out		
		· ·		[@po	artName]	I_refx2 I_refx4		
						I_refx8		
	. L_							
- 1								
	Mouse L	: mouseSi	ngleSelec	tPt 1	M: schHiMous	ePopUp()	R: schZoomFit(1.	0 0.9)
	>		,			110		

Figure 34: CurrentMirror Symbol created by the system.

To change the part name, click at "[@partName]", then go to menu: Edit...Properties...Objects..., or use the keyboard to input "q".

Then you can change the *Label* from "[@partName]" back to "CurrentMirror" from the *Properties* form.

Save and Close the Virtuoso Symbol Editor.

Creating a test bench:

Now that you have created a schematic and symbolic view of the CurrentMirror, it is time to create a test bench. This will be a virtual test bench, but it will have to have a power supply net, input vectors, and the testing object-the CurrentMirror- to perform correctly.

Creating the Test Bench:

In the library manager, go to *File... New... Cell View*. Fill out the pop-up window exactly like Figure 35 and click on *OK*. The *schematic editor* will appear.

× Create	New File						
ок	Cancel	Defaults		Help			
Library N	ame	Leaf	Cell	_			
Cell Name		CurrentMirror_TB					
View Nan	ne 🛛 🖻	schematic					
Tool	Co	Composer-Schematic 💷					
Library p	ath file						
/graduat	te/ng8297	25/LeafC	ell/cds.	lib			

Figure 35: Creating a test bench.

In the *schematic editor* window, press *i* in your keyboard or go to *Add... Instance*. Click on *Browse*, select the *LeafCell* library as in Figure 36, (click on *Flatten* if there are many instances under the library), select *CurrentMirror* and stamp it down in your test bench schematic (Figure 37).

🗙 Component Browser 🔳 🗖 🗙	×Add Instance	
Commands Help 3	Hide Cancel Defaults	Help
Library LeafCell . Flatten . Filter . GurrentMirror	Library LeafCell Cell CurrentMirror View symbol Names I Array Rows I Columns	Browse
		Jpside Down

Figure 36: Adding Current Mirror into the test bench.

× Virt	uoso®	Sc	hematic	Editin	g: Lea	fCell Cu	rrentM	irror_TB sc	:he 🔳	
Cmd	1:		Sel:	0						2
Tools	Desi	gn	Window	Edit	Add	Check	Sheet	Options	NCSU	Help
		-								: :
÷.	 . .			in ·				I_ref_ou	IG · ·	· ·
\mathbb{R}^2	· ·				Cu	rrentMi		Lrefx Lrefx	2	
\mathbb{Q}^2			· · ·					Lrefx	8	· · ·
-			· · ·				· ·	· · · ·		
iter i	Mouse	L ::	mouseSub	Selec	tPt M	[:		R :		_
16	>									

Figure 37: Stamping down the Current Mirror. into the test bench.

While still in add instance mode add the *gnd* and *vdd* global symbols just like you did when creating the schematic for the CurrentMirror (Figure 38).

				g: Lea	fCell Cu	rrentMi	rror_TB s	chematic	(
Cmd:		Sel:	0							2
Tools	Design	Window	Edit	Add	Check	Sheet	Options	NCSU		Help
		d					vdd		.vdd.	
		· · · ·		· · ·		· · ·	• • • •	· • · · · ·	• • •	
2 ²										
<u>@</u> 2	· · ·	· · · ·		· · ·	· · ·	· · ·	· · · ·	· · · · · ·		
			 .	•	I_ref_in			· [_ref_out	(6 · · ·	
						Curr	entMirror	L_ref×2		
199				L				Lref×8		
<i>I</i> :	i i∎i i ign	d			· · ·	· · ·				
<u>n</u> i										
۳ د 1994		showCli	CKINT	0()	M: sc	hHiMous	sePopUp()	R:schZo	omrit()	1.0 0.9)

Figure 38: Stamping Vdd & Gnd into the test bench.

Add the power supply (*vdc* from voltage sources in *NCSU_Analog_Parts*) according to Figure 39. Make sure set the DC voltage to 2.5 volts. Stamp it down into the schematic (Figure 40).

🗙 Add li	nstance		×
Hide	Cancel	Defaults	Help
Library	NCSU_An	alog_Parts	Browse
Cell	vdcj		
View	symbol		
Names			
Array		Rows <u>L</u> Colu	ımns 1
Rotat	te	Sideways	Upside Down
AC magn	itude	Ĭ.	
		v	
AC phase	3	ļ.	
AC phase DC volta			
-	ge		

Cmd:	:	Sel:	0						2
Tools	Design	Window	Edit Add	Check	Sheet	Options	NCSU		Help
g	· · · · ·	.vdd.		· · · ·	· · ·	vdd		. sdd	 .vdd
Y.		· · · ·				· · · · ·			
R ²	· · · ·		· · · · · ·	· · ·	· · ·	· · · · ·	· · · · · · ·	· · · · ·	· · ·
82									
Ņ	vddl.	VØ	· · · · · ·	Lref	lín -		Lref_out		
R.	gindl	*		· ·		CurrentMi	rror Lref×4 Lref×8		
		• • • •						· · · · ·	
	· · · · · · · · · · · · · · · · · · ·	gnd .							

Figure 40: Stamping down the power supply

Then we need to add a current source for the I_ref_in signal. In order to get the instance *ldc*, we Browse into library *NCSU_Analog_Parts*, then *Current_Sources* (Figure 41). Make sure to put in the value for the dc current (in this case, we put in 80u, and make sure there is no space between them) (Figure 41). Stamp it down as in Figure 42.

🗙 Component Browser 🔳 🗖 🗙	×Add Ir	istance			
Commands Help 3	Hide	Cancel	Defaults		Help
Library NCSU_Analog_Parts	Library	NCSU_Ana	alog_Partšį́		Browse
Flatten _	Cell	idď			
Filter It	View	symbol			
riter _{ja}	Names	Ĭ.			·
(Go up 1 level) cccs	Array	F	Rows	Columns	1
idc iexp	Rotat	e	Sideways	ļ	Jpside Down
ipulse ipwl ipwlf					
isin	AC magni	tude	Ĭ.		
VCCS	AC phase	l	Ĭ		
Current_Sources	DC curre	nt	80u A		
	Noise file	name	Ĩ		
	Number o	of noise/fre	eq pairs 🕅		

Figure 41: Adding the current source.

Cmd:		Sel:	0						
Tools	Design	Window	Edit Ad	ld Chec	k Sheet	Options	NCSU		Help
	· · · ·	. xdd		· · · · ·	· · · ·	vde	d xdd	. vdd	wdd
*		 				· · · · ·		· · · · ·	
<u>2</u> 2	· · ·	· · · · ·	vddi 13	dc= 80.0u	· · · ·	· · · ·	· · · · · · · ·		· · ·
2	· · ·		😭 . .net12						· · ·
	v.do	II. <mark>¶</mark> ∨ø			Lref_in		Lref⊥ou Lref≾		· · ·
		vdc=2.8	5			Currenti	Lrefxi Lrefxi	4 • • •	
		· · · · ·		· · · •					· · ·
	 J	. gnd							

Figure 42: Stamping down the current source.

Cmd:		Sel:	0										
Fools	Design	Window	Edit	Add	Check	Sheet	Options	NCSU				ŀ	leip
7	· · ·		 1d	· ·	· · ·	· · ·		. vdd	. vdd		vdd.		•
-		<mark>.</mark>						<mark>.</mark>	1 .	<mark>.</mark>	• · · ·		
9. I.			• •										
200			• •	• •								• •	
22		· · · · • ∔			· · ·								
					13								
32					\$3								
<i>~</i>					i sa sa					. .			
ia.									1 6				
~						- Lre	∍f _i n		+ Lref⊥out —	 • · ·			
itera:		· · · Jve		• •		· ·		CurrentMirror	Lrefx2				
90 I		$\sim \phi$	• •						· · L_refx4	·		• •	
16		_							Lrefx8				
94													
]			nd .										
	4												12

Now we have all the instances we need. The next thing to do is to wire them up as in Figure 43.

Press the ΘC key to get out of add instance mode. If you want to move the symbol around, press the **m** key for move, and press the ΘC key to get out of it.

Go to Design... Check & Save to check for errors.

You are now ready to simulate the Current Mirror!

Simulation in Spectre Spice using the Affirma environment:

Now that you have created a schematic and symbolic view of the Current Mirror as well as a test bench for testing it, it is ready to run the Affirma Analog environment tool. We are simulating an analog circuit in a physics based environment that solves for voltages and currents over time.

To simulate your circuit:

From the *CurrentMirror_TB* schematic window, go to *Tools... Analog Environment*. A pop-up window like Figure 44 should appear. You will need to customize your environment the first time you run *Affirma*.

Figure 43: The completed test bench

	Virtuoso® Analog Design Environment (1) Status: Ready T=27 C Simulator: spectreS							
Sessio	n Setup Analyses	Variables Outputs Simulation Results Tools	Help					
	Design	Analyses	-₹ _₹					
	LeafCell	# Type Arguments Enable	JAC ■ TRAN JDC					
Cell View		lake sure you have the	III XYZ					
D	esign Variables	ght Design Cell View. Outputs	₽					
# Na	me Value	<pre># Name/Signal/Expr Value Plot Save March</pre>	34					
			8					
			8					
>		Plotting mode: Replace	\sim					

Figure 44: Affrima Analog Environemt

You will be using the Spectre Spice simulator, which is a spice like simulator, using BSIM3 model decks, but the underlying algorithms are different. These algorithms are transparent to the user.

Go to Setup...Simulator/Directory/Host. A pop-up like Figure 45 should appear. Make sure the Simulator is set to SpectreS, and you have the right project directory. Click OK when done.

😯 Virtuoso® Analog Desig	n Environment ((1)				-	. D × D	
Status: Ready				T=27 C 🔇	imulator: sp	ectre	S 7	
Session Setup Analyse	es Variables (Outputs	Simulation	Results T	ools		Help	
Design		_	Analy	ses		1	-C	
Simulator/Direc						_	Ţ	
Library L Temperature Model Path		P	Arguments		En:	atle	JAC FTRAN	
Cell ^C Model Corner .						1		
View ^s Environment	. •	4					T ¦r ∥ X Y Z	
Des of the second se		/					l n. / l	·
Simulation Files	S	/ nulator/	/Directory/H	ost Virtuo	so® Anzlog [)esign	Environ	ment (1) 🔀
# Name Value	OK Ca	ancel De	efaults					Help
	Simulator	<	spec tre S					
	Project Direc	tory ~	/cadence/s	imulation				
	Host Mode	-	local 🗸 re	emote 🧹 di	istributed			
	Host							
>	Remote Direc	ctory 🗌						

Figure 45: Simulator/Directory/Host.

If the Design is not shown, go to Setup...Design..., and choose the right design to simulate (figure 46).

🗙 Affirma Analog Circuit De	sign Environmen	ıt (1)	
Status: Ready		T=27 C Simulator: s	pectreS 3
Session Setup Analyses	Variables Outpo	uts Simulation Results Tools	Help
Design	× Choosing Des	sign Affirma Analog Circuit Desig	n En 🔀 🛒
Library LeafCell	OK Cancel	►	Help
Cell CurrentMirror_TB	Library Name	LeafCell 💷	
View schematic	Cell Name	ALC_NEW	z
Design Variables		ALCPF_NEW CurrentMirror	. × . ×
# Name Value		CurrentMirror2 CurrentMirror2_metal	
		CurrentMirror_TB CurrentMirror_metal	Ē
	View Name	schematic 💷	Ē
	Open Mode	🔶 edit 🔷 read	
>			1,

Figure 46: Choosing the right design to simulate..

Go to **Setup...** Model Path and a pop-up like Figure 47 should appear. Make sure you have input these model paths in the form, except the <u>home directory</u> may differ.

🗙 Setti	ing Mode	l Path Virtuoso® Analog Derign Environment (1)	×
ок	Cancel	Defaults Apply Apply & Run Simulation	Help
Directories		<pre>/home/shao/cadence/models/spectre /apps/cadence/local/models/spectre/public</pre>	
New D	irectory	Add Above Add Below Change Delete	
Corner		session-default $_$	
		New Corner Copy Corner Delete Corner	

Figure 47: Setting up the model path.

Now you need to set up what kind of analysis you will run. Go to *Analyses... Choose* and fill out the pop-up according to Figure 48.

🗙 Choosing Analyses Virtu	ioso® Analog Desi	gn Environment (1) 🛛 🗙							
OK Cancel Defaults A	pply	Help							
Analysis ♦ tran ↓ ↓dc ↓	ac √sp xf √pss	√pdisto √spss ∕noise							
Transient Analysis									
Stop Time 2017	Stop Time 2011								
Accuracy Defaults (errpreset) conservative moderate liberal									
Enabled		Options							

Figure 48: Setting up the transient analysis

While still in the Chososing Analyses Form, click on Analysis dc. Then Figure 49 will show.

🔀 Choosing Analyses Affirma Analog Circuit Design Envir 🔀	
OK Cancel Defaults Apply Help	
Analysis vtran vac vsp vpdisto vspss	
◆ dc ↓ xf ↓ pss ↓ noise	
DC Analysis	
Save DC Operating Point $_$	
Sweep Variable Component Name Temperature Select Component Component Parameter Select Component	
Model Parameter Parameter Name ⊥	Click on it, and then the
Sweep Range	test bench schematic will pop-up for you to select the right component.
 ◆ Start – Stop Start Stop Start Stop E ✓ Center-Span Sweep Type Automatic Add Specific Points 	Note: Schematic window will pop-up only if it has not been closed. If it is not opened yet, you have to open it manually to select the component.
Enabled Options	

Figure 49: choosing the dc analysis

Click on Select Component, then the CurrentMirror_TB Schematic window will pop in front, point your cursor at the Voltaget source and click it, then the Select Component Parameter form shows. Choose the "DC voltage" and then click OK.

				or_TB schemat	ic Virtuoso® Analog Des	sign Environm	
Cmd:	Sel: 0	Statu	is: Ready		T=27 C Si	mulator: spec	treS 6
Tools Desig	n Window Edit	Add Ch	🗙 Select C	omponent Par	rameter	\mathbf{X}	Help
			ок с	ancel		Help	
	vdd .		dc	vdc	"DC voltage"		vdd
8	🖌		mag 🔨	acm	"AC magnitude"		
100	T .		phase	acp	"AC phase"		T .
1 232	• • •		tc1	tc1	"Temperature coef:	ficier	
		711	tc2	tc2	"Temperature coefi	ficier	
6.2		dd! 17	tnom	tnom	"Nominal temperate	ire"	
		net7					
		ing ch				0.	· · ·
	t Vdc vdc=2						·
Спск а	t Vdc + vdc = 2	2.5					
1/1	La I						
~ ` `							
š 1	· · <u> </u>					· ·	
: · ·	a a a a a					- I *	
	gnd .					- I *	
	🗙						<u> </u>
- mouse	L: showClickI	nfo()				dan	uas ('sevS
	t component		1.51				

Figure 50: Setting up the dc analysis

Fill out the rest of the form as in Figure 51, and click OK. Make sure you set the right range of the start-stop point for the current source.

Then the Affirma Analog Circuit Design Environment window will look as in Figure 52.

imes Choosing Analyses Affirma Analog Circuit De	sign Envir 🔀
OK Cancel Defaults Apply	Help
Analysis _v tran vac vsp vpdi	isto 🗸 spss
♦ dc 🗸 xf 🗸 pss √noi	se
DC Analysis Save DC Operating Point	
Sweep Variable	∕¤0į́
Component Parameter Select Com	ponent
⊥ Model Parameter Parameter Name	dď
Sweep Range	
◆ Start-Stop Start 0. Stop	5
✓ Center- Span	▶
Sweep Type	
Automatic _	
Add Specific Points 🔟	
Enabled 🔳	Options

Figure 51: Setting up for the rest of the dc analysis

🙀 Virtuoso® Analog Design Er	nvironment (1)	
Status: Ready	T=27 C Simulator: spec	treS 7
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help
Design	Analyses	۲Ţ
Library LeafCell	# Type Arguments Enab	= TRAN
CellCurrentMirror_TBViewschematic	1 tran 0 20n yes 2 dc 0 5yes ►	
Design Variables	Outputs	Ľ.
# Name Value	<pre># Name/Signal/Expr Value Plot Save Marc</pre>	h 🖋
		\$
		8
>	Plotting mode: Replace	

Figure 52: Affirma window after setting up the analyses.

Now you need to choose which vectors you wish to plot out. Go to *Outputs...To Be Plotted...* Select On Schematic. Then the *Currentmirror_TB schematic* window will pop on top of all other windows. Click on the input and output pins of the CurrentMirror. The pins will be circled as in Figure 53. In this way, the current will be probed.

Cmd	:	Se	l: 0	S	tatus: F	Ready		Netlis	sting (Compo	nent:	160	Sim	ulator	:: spe	ctreS	;	11
Tools	Design	Window	Edit	Add	Check	Sheet	Options	Migra	te NG	CSU	J	•					Hel	lp
		· · ·		 Mel	e sure to	 	• • • •	· · ·			• •		• •		• •	· ·	• •	-
<u> </u>		vdd		squa	re instead	d of the v	wire, '				vdd		vdd		vdd		vdd	
¥., [1 I †			othe up.	rwise, the	e circle w	on't show	· · ·		· · ·			1		1 .	· · ·		
	- e - e 📍										- e -				- e -		- e.	
R	· · ·	vdd	I7 idc=	e e BØn e														
<u>10,2</u>		8	₽ .								- e.				÷.			
- Maria	vddl 📕	. netz	Ľſ	<u>}</u>	Lref⊥in			- Le	ef_out		Ŋ							
	· · · · E	vdo=2.5		<i>.</i>		Cu	mentMirro	r > 4	_refx2	\mapsto	4-		.		÷.	• •		
27 3 I	gndl 🖕								_refx4 _refx8	1 X	7				- · ·			
際日				. L						<u>, г</u>		• •	• •	• •	• •	• •	• •	
1/1	- 1 - 1 -																	
		gnd 7																
\cap	l mouse L	: showCl	lickIr	fo()		M :	schHiMo	usePon	Un ()		B	: hi	ohrti	0			1	~

Figure 53: Selecting the pins.

Press the **esc** key to get out of selection mode. Your *Affirma* pop-up should look like Figure 54, but the net names might be different.

🔆 Virtuo	oso® Ana	log Design E	nviron	imeni	t (1)						_	
Statu	ıs: Ready	,		4				T=27 C	Sim	ulator	: spectre	S 7
Session	1 Setup	Analyses	Varia	bles	Outputs	Simul	lation	Results	Тос	ls		Help
	Desigi	า					Analy	ses				٠Ę
Library	LeafCel	1	#	Тур							Enable	J AC ■ TRAN
Cell View	Current schemat	Mirror_TB .ic	1 2	tra dc	n	0	20n 0	5			yes yes	
De	esign Var	iables					Outp	uts				ľť,
# Nau	ne V	alue	#	Nam	e/Signal	/Expr	۲	Jalue	Plot	Save	March	
		1 2 3	IO/ IO/	I_refx2 I_refx4 I_refx8	L			yes yes yes	no no no	no no no	8	
			4 5		I_ref_ou I_ref_in				yes yes	no no	no no	8
>							Plottir	ig mode:		Replac	;e	\sim

Figure 54: a complete Affirma window.

Go to Simulation... Run. A *Warning* window will pop-up for saving the outputs (Figure 55). Just click on **Yes** and let the simulator run. The CIW and the Affirma pop-up will show you the process it goes through to simulate your circuit. If all went well, a plot like Figure 56 should appear.

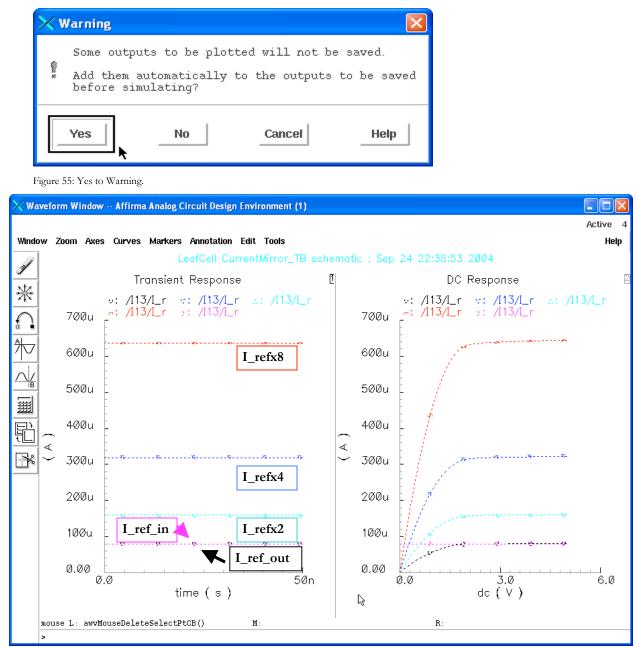


Figure 56: Output Graphic.

From the Transient Response, we see that the I_ref_in and I_ref_out are almost aligning but not exactly (I_ref_in is 80mA, and I_ref_out is 79.59mA), same as in the dc response. They start getting closer as the V_{gs} is getting higher. Can you tell why it is like that?

If the simulations worked, go back to the *Analog Design Environment* window and choose *Session...Save State ...* to save the simulation setup as in the figure below:

🚼 Virtuoso® Analog	Design Environment	(2)		. D × D		
Status: Ready		г	=27 C Simulator: spectre	S 6		
Session Setup A	nalyses Variables	Outputs Simulation R	esults Tools	Help		
Schematic Window		Analyse		۲Ţ		
Load State	# Тура	Arguments	Enable	⊐ AC ■ TRAN		
Save Script Options	🗙 Saving State Vi	rtuoso® Analog Design E	nvironment (2)			×
Reset	OK Cancel Ap	ply				Help
[™] Quit Design varia	Save As	state1				
# Name Va]	Existing States	CurrentMirror_sch_s state1	im			
	What to Save	Analyses	Variables		Outputs	
		Model Path	Environment Option		Simulator Options	
		Convergence Setup	- ·		iraphical Stimuli	
>		Conditions Setup	_ Results Display Se	tup _ D	istributed Process	sing

Also go to CIW and choose *Options... Save defaults* and click *OK* on the pop-up.

Section 3: Layout

Pre-Layout of the CurrentMirror

This is a critical step. Once this step is done, the actual layout step will be very easy. Here is what we need to do:

Sizing:

First, we look at the S ratio of our transistors. For I_ref_in and I_ref_out, we use the minimum sizes, which S is 1. Then for I_refx2, we use S = 2 for double the current. For the same purpose, we use S = 4 for I_refx4, and S = 8 for I_refx8.

Then we look at the bubble schematic to pick which transistor leaf we are going to use.

Bubble Schematic:

Use different markers to fill in the joints and wires. Figure 57 shows the complete fill_in_the_blank of the bubble schematic.

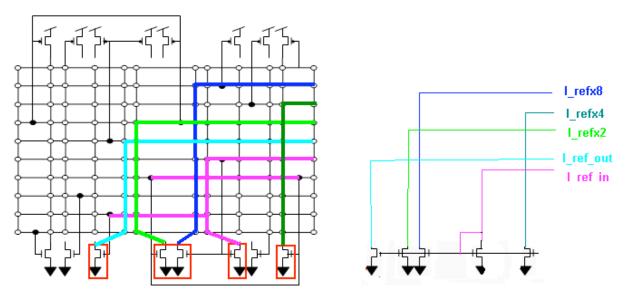


Figure 57: Bubble schematic of the CurrentMirror.

After completing the bubble schematic, we may then go to the actual layout.

Layout in Leaf Cell:

First we need to create a layout view of our CurrentMirror. Go to the *Library Manager* and create a new cell view according to Figure 58.

🗙 Create	Create New File								
ок	OK Cancel Devaults								
Library Na	ume	Leaf	Cell	_					
Cell Name	C	CurrentMirror							
View Nam	e 1	layout							
Tool	_	Virtuoso 💷							
Library path file									
/graduat	e/ng8297	25/LeafC	ell/cds.l	ibį́					

Figure 58: Creating a layout view

🗙 Virtuoso® Layout Editing: LeafCell CurrentMirror layout 📃 🗖 🔀										
X: 0	.8	Y: 2.0	(F	⁻) Sel	ect: O	dX: -8	55.2	dY: -38	38.0	D 7
Tools	Design	Window	Create	Edit	Verify	Connectivity	Options	Route	NCSU	Help
÷.						· · · · · ·				
- <u>1</u>					• • • •					
		· · · · · ·	· · · · · · ·		· · · ·		· · · · · ·		· · · · ·	
	· · ·	· · · · ·				· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	
	· · ·	· · · ·	· · · · ·	· · ·	· · · ·	· · · · · ·	· · · · ·		· · · ·	
						· · · · · · · · · · · ·				
Ļ										
						· · · · · · · ·				· · · -
- 2 IV	mouse L: showClickInfo() M: mousePopUp() R:hiZoomAbsoluteScale									ale(
/	> modify_	plot								

Figure 59: Layout Editor

Figure 59 shows the layout editor that you used in the cell design tutorial.

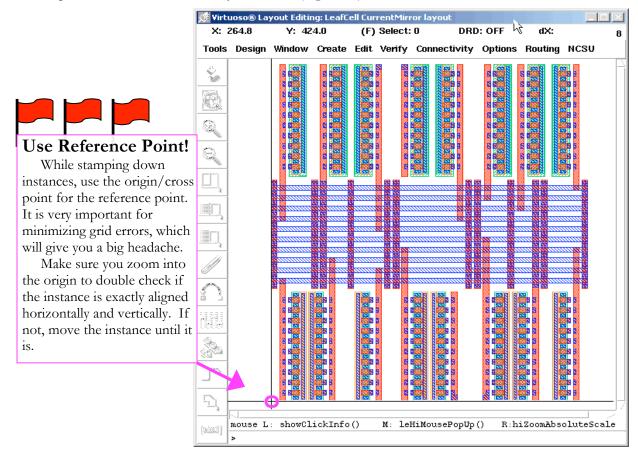
Notice that the layers are slightly different in the LSW (Fig 60). This is the SpartanN process.

XLSW _ 🗆 🗙		dX: aY:
Edit Help	Conne	ectivity Options Route NCS
pwell dg		Display e
SEAG		Layout Editor E
■ Inst ■ Pin		
		From the Layout
AV NV AS NS		Editor, click on OptionsDisplay.
pwell dg 🖾	Important Notes:	
mwell dg	Make sure you check your Disp	
pbase dg	time you open a Layout Editor to avoid	placing and aligning
active dg	problems.	
nactive dg		
pactive dg	Display Options	×
cactive dg	OK Cancel Defaults Apply	Help
nselect dg	Display Controls	Grid Controls
pselect dg	■ Open to Stop Level _ Nets	Type ↓ none ♦ dots ↓ lines
poly dg	Axes Access Edges	
elec dg	Path Borders Instance Pins	Minor Spacing
metal1 dg	Instance Origins Array Icons	Major Spacing
metal2 dg	EIP Surround Label Origins	X Snap Spacing
	_ Pin Names ■ Dynamic Hilight	Y Snap Spacing
cc dg	Dot Pins ■ Net Expressions Use True BBox Stretch Handles	
via dg	Cross Cursor	
glass dg		Filter
Nodre dg		Size 6 Style empty -
nolpe dg	Show Name Of vinstance 🔶 master	
🗱 pad 🛛 dg	Array Display Display Levels	Snap Modes
text dg	Border	Create orthogonal -
res_id dg	Source Stop 20	Edit orthogonal 🗆
cap_id dg	k	
dio_id dg	◆ Cellview ↓ Library ↓ Tech Library ↓ File	~/. cdsenv
pwell nt		
nwell nt	Save To Load From	Delete From

Figure 61: Setting Display Options

To set the display so that all the layers will appear, go to **Options... Display** in the layout editor. Set the pop-up according to Figure 61 and click ok.

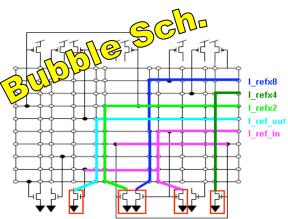
Also, make sure you set the *Grid Controls* as in Figure 61 to minimize the gird errors while doing the DRC.


Routing the Leaf Cell Block:

Go to **Create**...**Instance**..., or press *i* in the **Layout Editor**, and then fill out the form as in Figure 62. The Leaf Cell Block instance is called *ALC* in the *PADFRAME* library.

Creat	e Instan	ice			×						
Hide	Cancel	Defaults	К		Help						
Library	PADE	RAME			Browse						
Cell	ALCį										
View	layo	layoutž									
Names	IŢ										
Mosaic		Rows	1	Columns	1						
		Delta Y	417.6	Delta X	348.8						
Magnification 1											
년 Rot	tate	Δ	Sideways		Upside Dow						

Figure 62: Adding the Leaf Cell Block into the layout.


Stamp the ALC down into the Layout Editor (Figure 63).

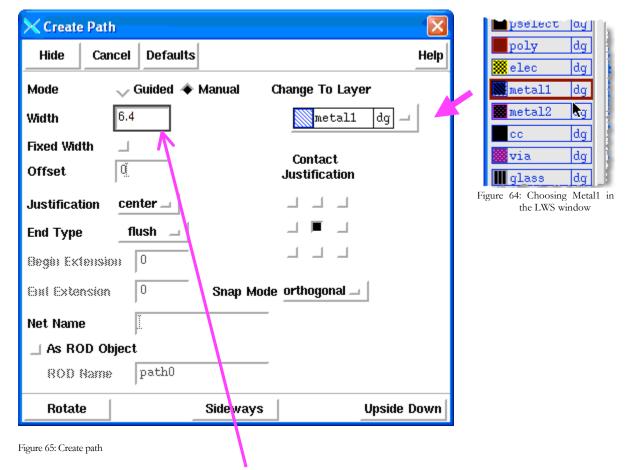
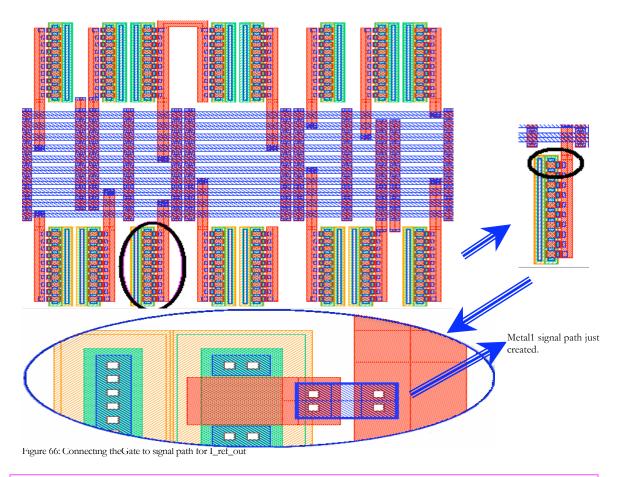
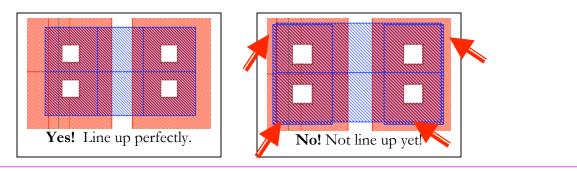


Figure 63: stamp down the ALC


Now, referring to the bubble schematic we did in the pre-layout, we start to layout the metals.

- Zoom in to the left most cells we are using (referring to the bubble schematic, it is the one for *I_ref_out*) as in Figure 66.
- Find and click on *Metal1* in the *LSW* window (Figure 64 shows part of the LSW window). Come back to the layout window, go to *Create....Path*. The *Create Path* window will show up (Figure 65).


- 3. Fill in the width of the path to be **6.4** in the form (Figure 65). **Note:** we choose the width to be as large as possible so that the path can cover as wide as the contacts to minimize the resistance.
- 4. To connect the gates, the poly layers of signal path, point the mouse at the starting location of the path you are going to create, click once, then move the mouse at the ending location of the path and double click to finish the path (Figure 66).

Important Notes:

For every metal layer you put down, make sure it is aligned with the horizontal and vertical boundaries. If you have the right display setup as mentioned earlier, and careful with every metal layer you put down, you can get rid of the headache of going back to them for grid errors later after the DRC.

5. Connect the **source** as well as **drain** using **path width** to be **3.2** (Figure 67). **Note:** For this connection, we use a narrower path width of **3.2** because if we still use width 6.4, it will overlap with the poly layers and violate the design rules of minimum separation between the same layers.

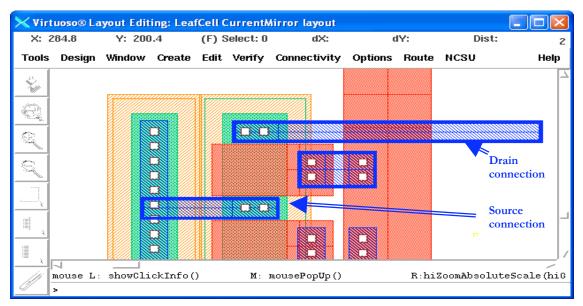
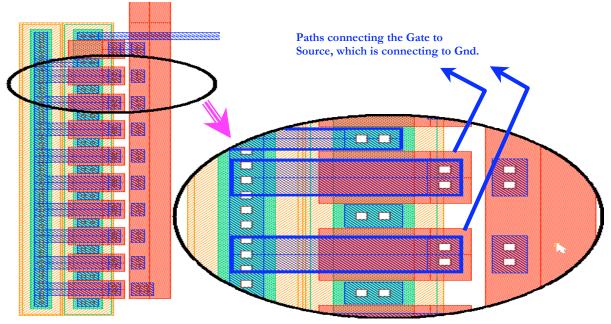
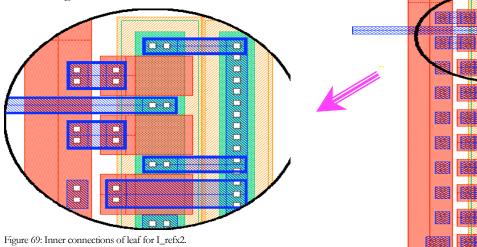


Figure 67: Connecting the Body to Source, Drain to Body.

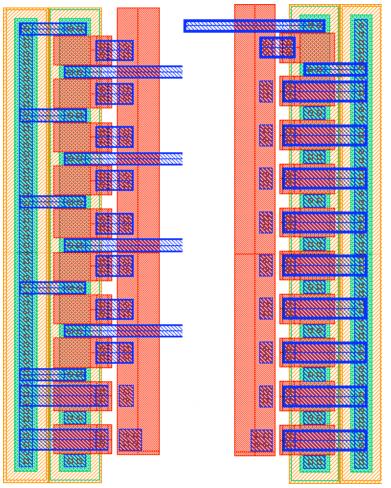
6. Now we need to ground the transistors we aren't using. To do so, create paths of width *6.4* (same width as used in the connection of the signal path over poly), connect the gate to the source (Figure 68) so that when we ground the source later, we also ground the un-used transistors.




Figure 68: Grounding the un-used transistors (Shorting the gate to gnd!).

Why we need the paths for grounding the unused nmos?

The LVS may pass without those grounding paths sometimes. However, we must keep them because if we leave them floating, they will act like an antenna picking up unwanted signals, which is noise, so that the circuit might not work.


7. Now we've finished the inner connections of the NMOS leaf for I_ref_out, then we zoom into the next leaf, which is the one for I_refx2 according to the Bubble schematic.

Repeat steps 2 to 6 to create paths connecting the transistors for I_refx2. Make sure they are connected in parallel (as shown in Ch1) in order to have S = 2. The finished one should look like Figure 69.

Repeat steps 2 to 6 to create paths connecting the transistors for I_refx8. Make sure they are connected in parallel (as shown in Ch1) in order to have S = 8. The finished one should look like Figure 70.

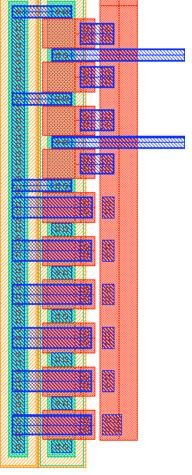
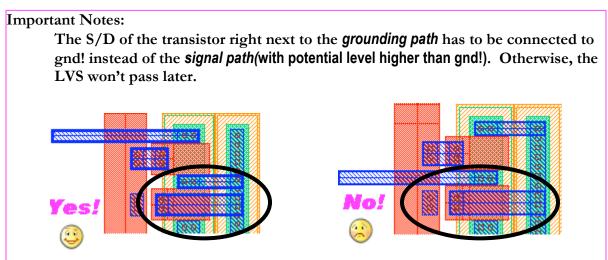
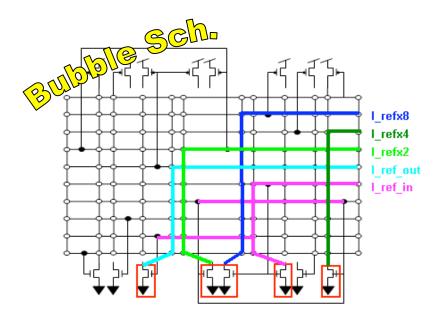
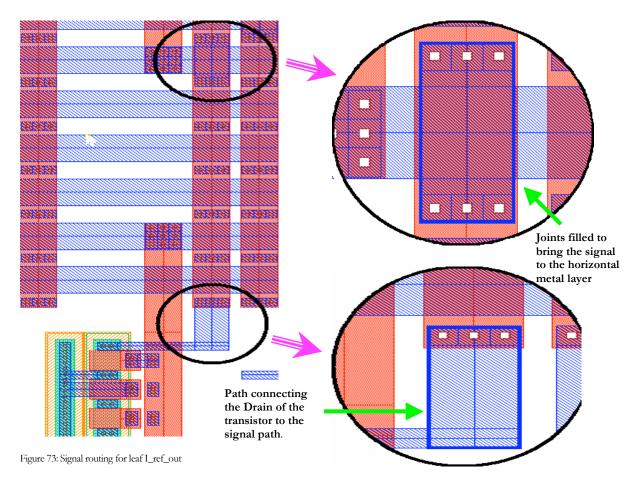



Figure 70: Inner connection for leaf I_refx8.


Figure 71: Inner connection for leaf I_ref_in


Figure 72: Inner connection for leaf I_refx4

10. Repeat steps 2 to 6 to create paths connecting the transistors for *l_ref_in*. The finished one should look like Figure 71.

- 11. Repeat steps 2 to 6 to create paths connecting the transistors for I_refx4. Make sure they are connected in parallel (as shown in Ch1) in order to have S = 4. The finished one should look like Figure 72.
- 12. After the transistors are connected with proper sizes, we need to connect the leaves together. Again, we start from the very left, which referring to the Bubble Schematic is signal I_ref_out. Create path with width of **6.4**, connect the Drain to the joints as in Figure 73.

It is very helpful to label the path after you are done with each signal path so that it will be easier while routing the signal paths outside the block.

13. Go to Create...Label..., a form as in Figure 74 will appear.

K Create Labels	X
OK Cancel Defaults	Help
Label(s): I_ref_out	Height: 8
Font: <u>stick</u> Justification: <u>centerLeft</u>	Transformation: Nor e
Create label array \square Spacing (X:Y) $\begin{bmatrix} 5 & 0 \end{bmatrix}$	Overbar 🔽 Layer 🔤 🗖
insure 74: Connection the actor	

- Figure 74: Connecting the gates
- 14. Type in the name of the signal, in this case, it is "**I_ref_out**" for *Label(s)*, and "**8**" for *Height*. Also, set the *Justification* to be **centerLeft**, and set the *Overbar* off in this case.
- 15. Click on *OK* and then stamp it right next to the **6**th row of metal line from the bottom as in Figure 75.

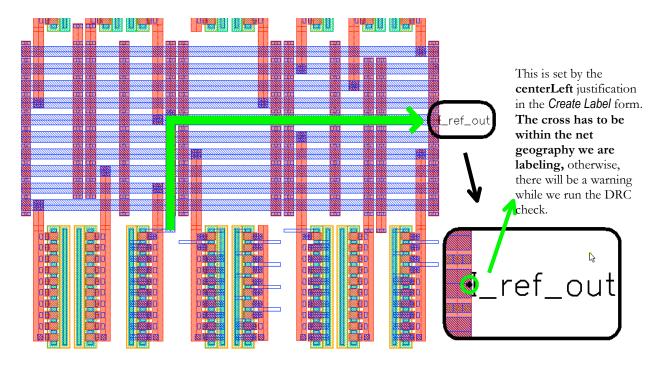
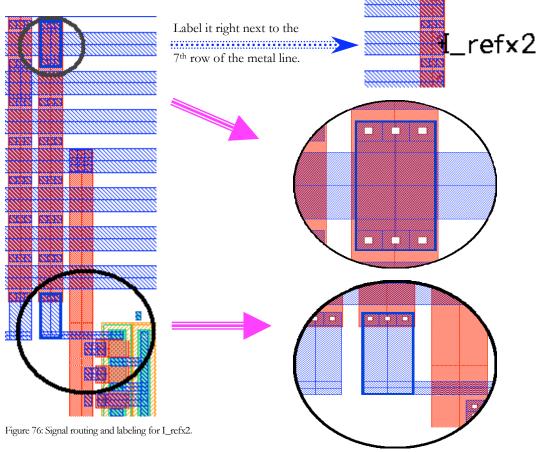



Figure 75: Creating label for signal I_ref_out

Repeat step 12 to 15 for the next leaf, which according to the Bubble Schematic is I_refx2 (Figure 76). Remember to create a label right next to the 7th row of metal line for it (Figure 76).

17. Repeat step 12 to 15 for the next leaf, which according to the Bubble Schematic is **I_refx8** (Figure 77). Remember to create a label right next to the **9**th row of metal line (from the bottom) for it (Figure 77).

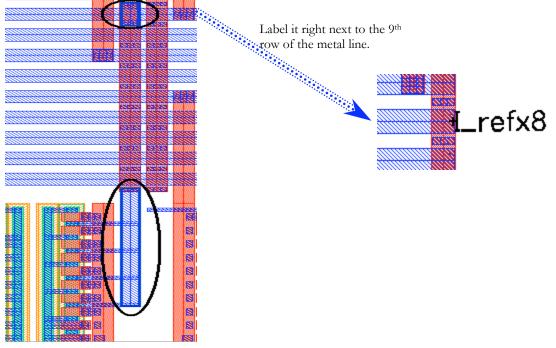


Figure 77: Signal routing and labeling for I_refx8.

Repeat step 12 to 15 for the next leaf, which according to the Bubble Schematic is I_ref_in (Figure 78). Remember to create a label right next to the 5th row of metal line (from the bottom) for it (Figure 78).

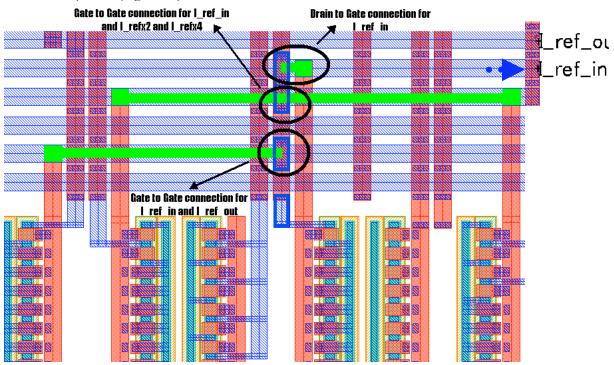
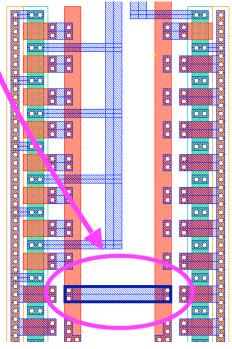



Figure 78: Signal routing and labeling for I_ref_in.

- 19. Also, make sure to make all the internal connections between I_ref_in and the gates of the transistors for the output currents, especially the gate connection between I_refx8 and /I_ref_in as in Figure 79 a.
- 20. Repeat step 12 to 15 for the last leaf, which according to the Bubble Schematic is I_refx4 (Figure 79). Remember to create a label right next to the 8th row of metal line (from the bottom) for it (Figure 79).

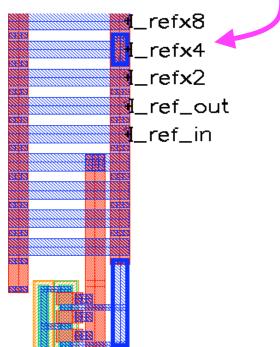


Figure 79: a) Gate connection between I_refx8 and I_ref_in.

b) Signal routing and labeling for I_refx4.

Now the connections between the transistors are done. It is time to connect the gnd net.

21. Zoom to the bottom of the source of the transistors as shown in Figure 80. Connect them together and label them *gnd* as well as in Figure 81.

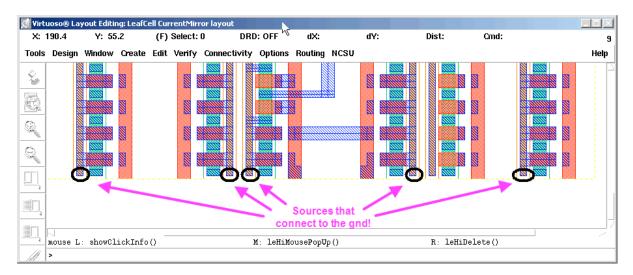


Figure 80: Zooming into the sources needed to be connected to gnd!.

📌 Yirtı	ioso® Layout Editir	ng: LeafCell C	urrentMirror	layout							
X: 1	195.2 Y: 57	.2 (1	F) Select: 0	DRD	: OFF	dX:	^{1√} d	IY:	Dist:	Cmd:	9
Tools	Design Window	Create Ed	it Verify C	onnectivity	Options	Routing	NCSU				Help
<u>I</u>	√ mouse L: showCl	ickInfo()		M :	leHiMo	usePopUp	0		R: hiUndo)	1.1.1.
	>										

Figure 81: Wiring the gnd net and label it "gnd!"

All the metal wirings are now done. Our labels don't associate with anything physical in the system. To let the system know which net is which, we need to insert the pins to point out the nets with the names we labeled previously.

22. To Create Input/Output Pins: go to Create...Pin... fill in the form as in Figure 82 for all the outputs. Note: make sure the Pin type is METAL 1.

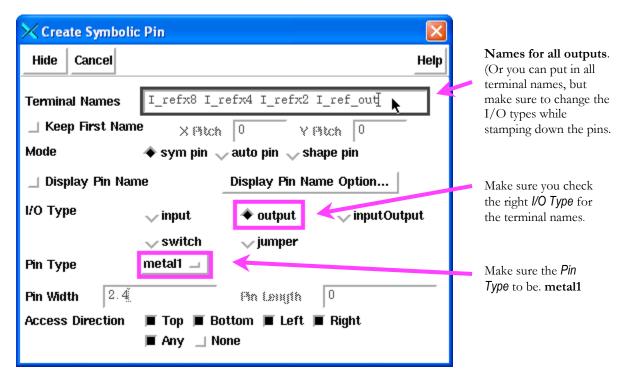


Figure 82: Adding the output pins.

23. Click once to stamp the first pin down (Figure 83), which is terminal I_refx8.

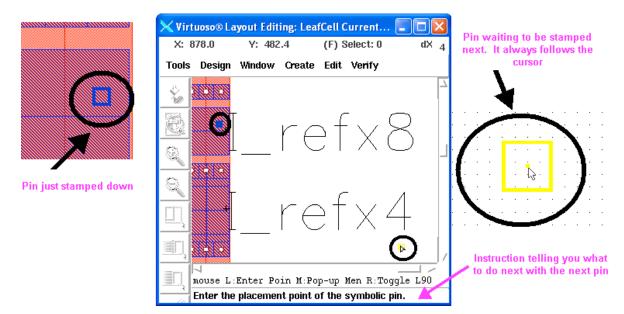


Figure 83: Stamping the output pin 1_refx8.

24. Stamp down the rest of the output pins in the same manner (Figure 84).

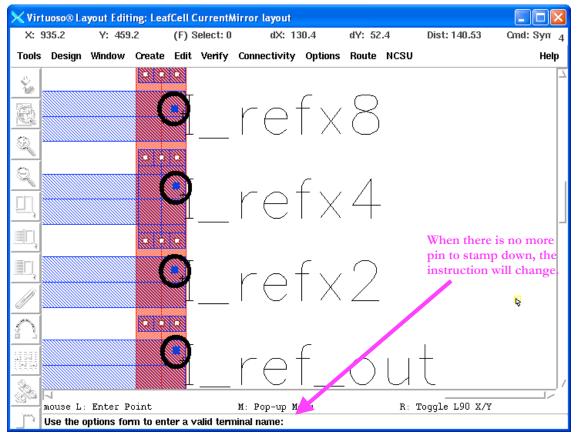


Figure 84: Stamping the rest of output pins.

25. Go back to the *Create Symbolic Pin* form; fill in the input pin name, I_ref_in (Figure 85), and stamp it down as in Figure 86.

🔀 Create Symbolic Pin	
Hide Cancel Help	Input terminal name
Terminal Names	input terminar name
_ Keep First Name X Pitch 0 Y Pitch 0	
Mode ◆ sym pin √auto pin √ shape pin	Make sure you change the <i>I/O Type</i> to input
_ Display Pin Name Display Pin Name option	
I/O Type	
√ switch √ jumper	
Pin Type	
Pin Width 2.4 En Lougth 0	
Access Direction 🔳 Top 🔳 Bottom 🔳 Left 🔳 Right	
🖬 Any 🔄 None	

Figure 85: Adding the input pin.

× Virt	uoso® La	yout Edit	ing: Leat	Cell C	urrenti	hirror layout				
X: 8	97.6	Y: 388).0	(F) S	(F) Select: 0 dX: 92.8			dY: -20.0		
Tools	Design	Window	Create	Edit	Verify	Connectivity	Options	Route	NCSU	Help
e Maria										7
					ł	r d f	- «	'n		_
R				₩_ –	I	\bigcirc (R	
8				2	~ ~ ~					/
-		Enter P ptions for				p-up Menu ninal name:	R	ToggL	e L90 X/N	ſ

Figure 86: Stamping down the input pin.

26. Go back to the *Create Symbolic Pin* form; fill in the *Terminal Name* as "gnd!"; make sure the *I/O type* is **inputOutput**, and then stamp it down as in Figure 87. Click on ESC to exit the adding pin mode.

× Virt	uoso® La	yout Edit	ing: Leat	íCell C	urrenti	Mirror layou	t		[×
X: 7	22.8	Y: -11.	.2	(F) S	Select: O) dX:	5.6	dY: -7.2	2	Dist: !	4
Tools	Design	Window	Create	Edit	Verify	Connectivi	ty Options	Route	NCSU	Hel	p
÷.		_									
				¥	-	\sim	\sim	<u>_</u>	\mathbf{x}		
9)		
R	1			~	<u>)</u>				[7]		J7
	mouse L:	Deselec	t Figur	e	M :		F	ł:			
	Use the o	ptions for	m to ent	er a v	alid ten	minal name:					

Figure 87: Stamping down the ground pin.

Now, we've complete the layout. Go to **Design**....**Save** the layout. Then it is ready for DRC.

Design Rule Checking (DRC)

Go to Verify... DRC and a pop-up like Figure 88 should appear. You just have to click OK and it should run with no errors like in Figure 89.

X DRC						×
ок	Cancel	Defaults	Apply			Help
Checking			~ hierarchica	Ť	•	zation
Checking	Limit	◆ full Coortên	vincrementa iate	al ,∕bya	rea	Sel by Cursor
Switch N	lames		Ι			Set Switches
Run-Spe	cific Com	mand File				
Inclusion	Limit		1000			
Join Nets	s With San	ne Name			ĸ	
Echo Cor	nmands		■			
Rules File	B		divaDRC.ru	ılį		
Rules Lib	irary		PADFRAM	Ę	_	
Machine			🔶 local 🤍 r	remote	Machine	

Figure 88: Running DRC

X icfb - Log; /graduate/ng829725/CDS.log		
File Tools Options Technology File	Help	1
completedThu Jul 15 19:32:05 2004 CPU TIME = 00:00:01 TOTAL TIME = 00:00:04 ******** Summary of rule violation for cell "CurrentMirror layout" ********* Total errors found: 0		- 17
<u> </u>		
mouse L: showClickInfo() M: mousePopUp() R: geScroll(nil "w"	nil)	
>		

Figure 89: No DRC Errors.

If you have errors, fix them according to the AMI16 design rules with the method you learned in the cell design tutorial. For more information about how to fix errors occurred during running the CDS tools, you may check on <u>FAQ 1 on Cadence Tools</u> in Prof. Parent's website. Once the circuit has no DRC errors, **save** your work again.

Circuit Extraction

Now that your circuit is laid out with no DRC errors, it is time to check if it is an electrical equivalent of your current mirror schematic.

🗙 Extrac	tor					
ок	Cancel	Defaults	Apply			Help
Extract M	lethod	🔶 flat	t _v macr	o cell 🗸 fu	ll hier 🗸 incre	emental hier
Join Nets	With Sam	ne Name			Echo Comn	nands 🔟
Switch N	ames					Set Switches
Run-Spe	cific Com	nand File				
Inclusion	Limit		1000			
View Nan	nes	Extracted	extract	:edį́	Excell	excell
Rules File	•		divaEX	T. rulį́		
Rules Lib	rary		PAD:	FRAME		
Machine			🔶 local	√ remote	Machine	

Go to Verify... Extract and a pop-up like Figure 90 should appear.

Figure 90: Running the Extractor.

Click on the set switches button in the extractor pop-up and a list of choice should appear like in Figure 91.

imes Set Switches(Ctrl+mouse for multiple)	
OK Cancel	Help
Extract_parasitic_caps	
Keep_labels_in_extracted_view	
Layer_convert_[np]active_to_active	
Layer_convert_active_to_[np]active	
Layer_create_nselect_around_nactive	
Layer_create_pselect_around_pactive	
Layer_create_select_around_field_poly	
Use_old_moscap_extraction	

Figure 91: Selecting Extract parasitic capacitances.

Click on *Extract_parasitic_caps* and press *OK*.

Your Extractor Form should look like Figure 92.

🗙 Extrac	tor					X				
ок	Cancel	Defaults	Apply			Help				
Extract N	lethod	🔶 flat	t _v macr	o cell 🗸 full h	ier 🗸 incre	emental hier				
Join Nets	With San	ne Name	_	L Echo Commands						
Switch N	ames		Extract	_parasitic_d	aps	Set Switches				
Run-Spe	cific Com	mand File				_				
Inclusion	Limit		1000							
View Nan	nes	Extracted	extract	eđ	Excell	excell				
Rules File	9		divaEX	T. rulį́						
Rules Lib	rary		PAD:	FRAME	-					
Machine			🔶 local	🗸 remote	Machine	Ĭ.				

Figure 92: Extractor all set to go.

Click **ok** to run the extractor. The **CIW** should give no errors as in Figure 93.

X icfb - Log: /graduate/ng829725/CDS.log		
File Tools Options Technology File	Help	1
<pre>0 pcapacitor ivpcell NCSU_Analog_Parts parasitics created. 0 pcapacitor ivpcell NCSU_Analog_Parts parasitics created. saving rep LeafCell/CurrentMirror/extracted Extraction startedThu Jul 15 19:42:04 2004</pre>	*******	* 7
J		~
▶		
<pre>mouse L: showClickInfo() M: mousePopUp() R: setExtForm</pre>	ι()	
>		

Figure 93: Extracted current mirror with no errors.

Layout versus Schematic (LVS)

An LVS check makes sure that the circuit you laid out is equivalent to the one you entered into your schematic.

To run an LVS check, go to Verify... LVS and a pop-up should appear like Figure 96.

Use the **Browse** button to select which schematic and which extracted file you are going to check for equivalence. The pop-up should be filled out just like Figure 94. Make sure to have PADFRAME as your Rules Library. Click *Run* to start.

C Artist LVS						
Commands				Help	11	
Run Directory	LVS			Bro	wse	Make sure you have the
Create Netlist	schematic		🔳 extract	ted		right views of the current
Library	LeafCell		LeafCell			mirror.
Cell	CurrentMirror		CurrentM:	irrorį		
View	schematic		extracted	<u> </u>		If you have a large circuit to check, set the <i>Priority</i> to
	Browse Sel	by Cursor	Browse	Sel by C	irsor	a higher number, so it will
Rules File	divaLVS.rulį			Bro	wse	not suck up system resources too much. You
Rules Library	PADFRAME					can leave it 0 (highest priority) for now.
LVS Options	Rewiring		Device	Fixing		NOTE: If you think
	_ Create Cross	Reference	🔳 Termina	als		that having your job
Correspondence	e File 🔄 🛛 /shao	/LeafCell	/lvs_corr_	file Cra	eate	running at the highest priority will get your job
Switch Names	F					finished quickly, think again. You could crash
Priority 🗓	Run local					the system if too many users use too high a
Run	Output En	or Display	Monito	or In	fo	priority on an LVS job!
Backannotate	Parasitic Pro	be Build	l Analog	Build Mix	ed	

Figure 94: Running an LVS Check

This will take several minutes. When the LVS check is succeeded, a pop-up like Figure 95 should appear.

×	nalys	is Job Succeeded									
a	Job	′/graduate/ng829725/LeafCell/LVS′	that was	started	at	'Jul	15	20:20:01	20047	has	succeeded
	0K		Canc	el							Help
Figure	95: Su	ccessful completion of an LVS check.									

Analysis Job Succeeded doesn't mean that the LVS check is passed. To make sure the LVS is passed or not, go back to the *LVS* Form and click on **Output** (Figure 96). The output file will pop up (Figure 97), listing the result of the comparison between the schematic and the extracted layout views.

Priority	Run local -				~ 1
Run C	Output Error D	isplay	Monito	or Info	
Backannotate	Parasitic Probe	Build A	Analog	Build Mixed	

Figure 96: Output the LVS information..

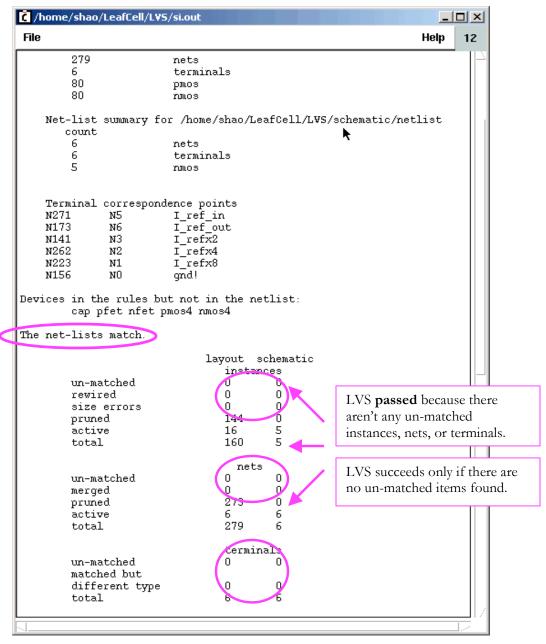


Figure 97: Output of the LVS.

What should be done if the LVS doesn't pass?

The first thing we need to do is to go back to the schematic view and the layout view to see if the wiring is wrong. Make sure the grounded nmos is not right next to a signal path with potential higher than the gnd! (Figure 98)

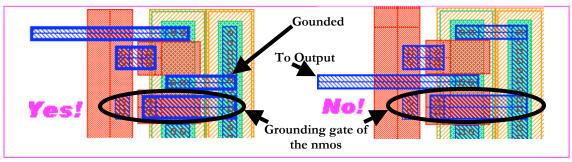


Figure 98: The right way to short NMOS to ground.

Alternative Note: On the other hand, this means if we are doing a project using pmos shorted to vdd!, the shorted pmos should not be place right next to a singal path with potential lower than vdd! (Figure 99)

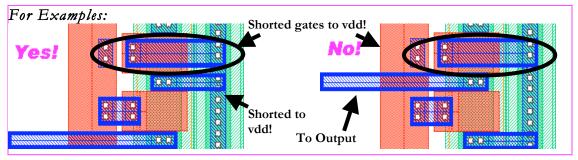


Figure 99: The right way to short PMOS to vdd.

If nothing wrong is found, we can go back to the LVS form. Click at *lnfo*, and then the *Display Run Information* window is shown (Figure 100). From this information window, we can click on whatever is available to see if we can get any clue of what was going wrong.

Cance	el Default	s Apply		Help
				•
U LOQ	g File 🛛 Out	tput		
atic Net	tlist Bad	Devices	Bad Nets	Bad Terminals
Auc	dit Merge	d Nets P	runed Nets	Pruned Devices
ted Net	tlist Bad	Devices	Bad Nets	Bad Terminals
Auc	dit Merge	d Nets P	runed Nets	Pruned Devices
Monita Analog				
t	Au Au Au Au Monit	Audit Merger ed Netlist Bad Audit Merger Monitor In	Audit Merged Nets P Audit Merged Nets P Audit Merged Nets P Monitor Info	Audit Merged Nets Pruned Nets Audit Merged Nets Bad Devices Bad Nets Audit Merged Nets Pruned Nets Monitor Info

Figure 100: Display Run Information for debugging.

If you try all these and still can't find what was going wrong, then you should have someone to check it for you, or go to the TAs for help.

Build Analog Extracted View:

In order to prepare for the analog post extraction simulation, the Analog_Extracted view should be created.

Go back to the *Artist LVS* form, find and click at the **Build Analog** botton, and then click **O**K in the popup window. The Analog_extracted view will be created by the system (Figure 101).

Correspondence Ele	Andrew Charles and Andrew A		
	Build Analog Extracted View		
Switch Names	OK Cancel Defaults Apply	Help	
Priority 🗓 Run ocal _	Extracted Parasitics $~~$ Include All $~~$ Set From Schematic $~~$ None		
Run Output Erro	r Display Monitor Info		
Backannotate Parasitic Probe Build Analog Build Mixed			

Figure 101: Build Analog Extracted..

To see how your Analog_Extracted current mirror looks like, go back to the library manager and select to open the **analog_extracted** view. Your extracted view should look like Figure 102.

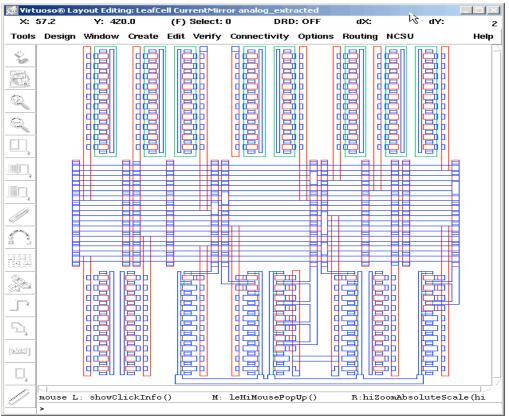


Figure 102: Extracted view of the current mirror.

Post Extraction Simulation

In post extraction simulation, you verify that your circuit still meets your specification with the additions of parasitic capacitances. For example, in a schematic, where two wires that are not connected, there is no transfer of AC voltage or current; while in a layout, where two metal lines are close but not connected, there is a capacitance between the two that that sometimes will cause cross talk. Post extraction simulation will show these errors. On the other hand, post extraction is another way to check out layout errors which sneaked through the verification processes.

To perform a post extraction simulation:

- 1. Open up the *currentmirror_TB* schematic window,
- 2. Click on Tools...Analog Environment...to start the Affirma Analog environment.

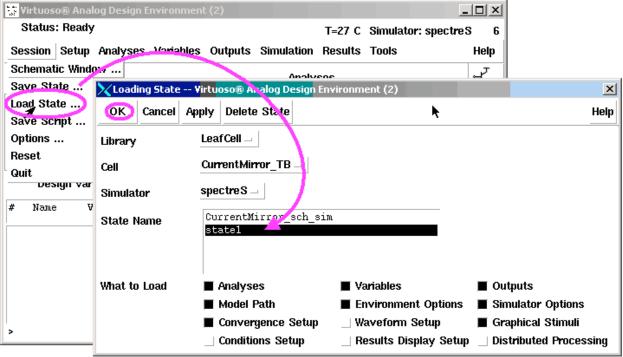


Figure 103: extracted environment setting.

3. Go to Session...Load State..., select the state1 which you save earlier, and then click OK (Figure 103). The Affirma will look as in Figure 104.

Status: Ready	T=27 C Simulator: spectres	; E
Session Setup Analyses V	ariables Outputs Simulation Results Tools	Help
Design	Analyses	٠Ę
Library LeafCell	# Type Arguments Enable	JAC F TRAN
Cell CurrentMirror_TB	1 tran 0 20n yes 2 dc 0 5yes	
Design Variables	Outputs	X Y Z
# Name Value	<pre># Name/Signal/Expr Value Plot Save March</pre>	
	1 IO/I_refx2 yes no no	1
	2 IO/I_refx4 yes no no	<u>1</u> 22
	3 IO/I_refx8 yes no no	8
	4 IO/I_ref_out yes no no	
	5 IO/I_ref_in yes no no	0
	Plotting mode: Replace 💷	to

Figure 104: extracted environment setting.

- 4. Go to Setup... Environment. A pop-up like Figure 105 should appear.
- 5. Type in the word "analog_extracted" as shown in Figure 105 in front of "spectraS"
- 6. Click OK, the finished one should look like Figure 104 again.

Kenvironment Options	×
OK Cancel Defaults A	pply Help
Init File	
Update File	Ĭ
Parameter Range Checking File	Type in "analog_extracted"
Recover from Checkpoint File	in front of "spectreS"
Netlist Type	<u>√ flat ♦ hierarchical</u> √ incremental
Switch View List	analog_extracted pectreS spice cmos_sch cmos.sch sch(
Stop View List	spectreS spice
Instance-Based View Switching	
Instance View List Table	Ĩ
Instance Stop List Table	I
Print Comments	
Include/Stimulus File Syntax	♦ cdsSpice 🗸 spectre
Include File	The second secon
Stimulus File	

Figure 105: Adding the extracted environment.

- 7. Go to Simulation...Run... to start the simulation. This will take a while. A *Graphics* window will pop up showing the simulation results (Figure 106).
- 8. Go to *Markers…Vertical Markers* to put them at 2 and 5V at the signal I_ref_out. You can find the readings at the bottom right of the *Waveform Window* as well as its slope.

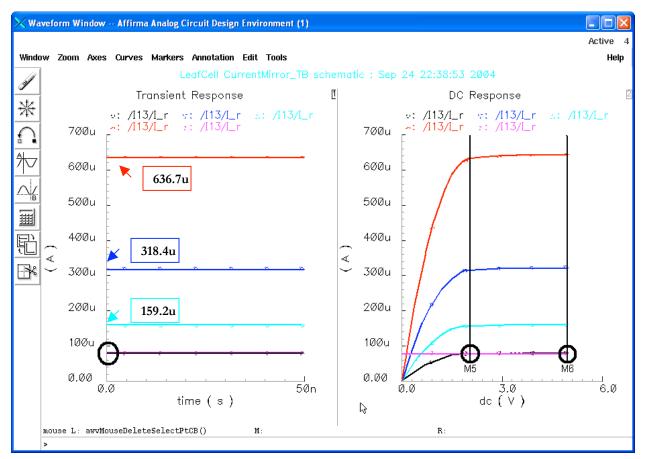


Figure 106: Post Extracted Simulation results.

Put in the Pad frame and Extraction Simulation:

After it is tested through simulation for both schematic and layout (extracted layout), it is time to put it into a pad frame. What you need to do is as follow:

1. Create and CurrentMirror_PF Layout view (Figure 107).

X Create New F	ile	×			
OK Canc	el Defaults	Help			
Library Name	LeafCell	_			
Cell Name	CurrentMirror	PF			
View Name	layout				
Tool	Virtuoso				
Library path file					
/graduate/ng829725/LeafCell/cds.lib					

Figure 107: Getting the metal only.

2. Go to Create...Instance... or just click at the "*i*" from the keyboard to add an instance called ALC_PF from library PADFRAME (Figure 108). Leave the window open.

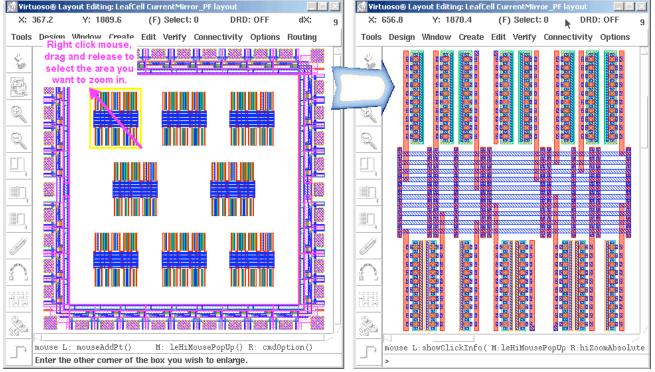


Figure 108: Add instance ALC_PF, and then zoom in to one of the leaf cell.

3. Leave the window open.

4. For security reason, we make a secondary copy of the layout for the CurrentMirror (Figure 109).

🐉 Library	Manager: WorkArea: /ho	me/shao/LeafCell			×
<u>F</u> ile <u>E</u> o	lit <u>V</u> iew <u>D</u> esign Man	ager		He	elp
_ Show	Categories 🔄 Shov	/ Files			
Library		- Cell		- View	
LeafCel	1	CurrentMirror		layout	
ANALOG		CurrentMirror	1.[Right Click tracted	
LeafCell NCSU Anz	L alog_Parts	CurrentMirror_PF CurrentMirror TB		layov+	
	qital Parts	CurrentMirror test		SCVOVBACUT	
Copy View			×	symb Open (Read-Only)	
— From —				2. Copy,	
	× co 11			Rename .	
Library	LeafCell			Delete	
Cell	CurrentMirror			Properties	
View	layout			Attach tech library	
	F			Gieck bi	
— To ——		nange the name to		Gieck Out	
Library	LeafCell "Cur	rentMirror_copy"	_	Cancel Checkout	
Cell	CurrentMirror_copy			Update	┝╼┢
				Version bifo	
View	layout			Show File Status	HA.
— Options ·				Sidmit	H
_ Сору Н	lierarchical			ſ.	2
V S	Kų Libraries Analog 1 NCSU_Dig	NCSU_Analog_Parts gital_Parts			
£	xact Hierarchy				
ł	Extra Views 👔				
	,				
_ Update	e Instances: Of Bill	re Library 💷			
_ Add To	Category	Cells			
4.					
	Apply	Cancel	Help		

Figure 109: Make a secondary copy of layout view for CurrentMirror.

- 5. Open CurrentMirror_copy Layout from the Library Manager.
- 6. Carefully select the ALC, not the wiring metals, and then delete the ALC (Figure 110).

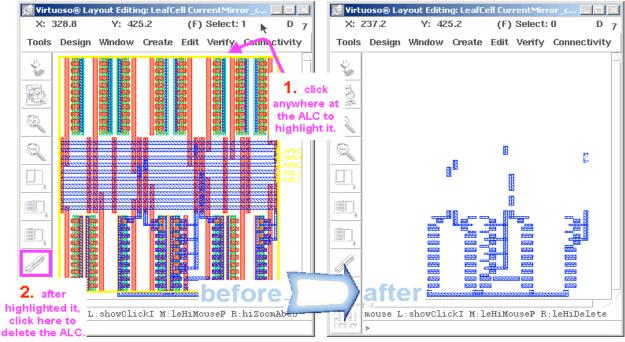


Figure 110: Steps for selecting the metals from the leafcell layout.

7. Select all the leftovers. While they are all hightlighted, click the copy button. It will ask you to select a reference point (Figure 111).

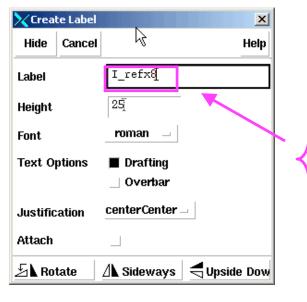
Decide your reference, click at your reference point. Move your mouse to the CurrentMirror_PF Layout window, and then point your mouse and click at the same position as your chosen reference (Figure 111).

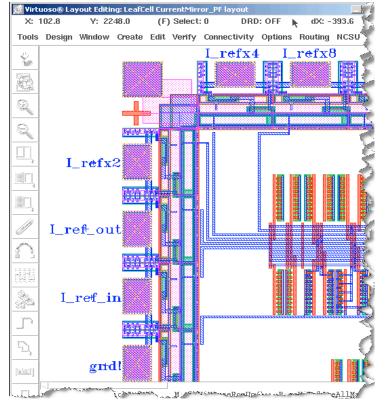
Note: You can always right click and drag anytime to select areas you want to zoom in.

Figure 111: Steps for copying the metals from CurrentMirror_copy to CurrentMirror_PF.

- 8. *ESC* from the copy mode and close the CurrentMirror_copy Layout window. When it ask you if you want to save the cell view, click *NO*.
- 9. In the CurrentMirror_PF Layout window, create a metal path with width **6.4** (we use 6.4 because it is as wide as the interconnection of the cells, but you can always choose the width for your design) to connect the *I/O pins* and *gnd!* to the pad. (Figure 112)

📌 Virtuoso® Layout Editing: LeafCell CurrentMirror_PF layout 15 (F) Select: 1 X: 691.2 Y: 2150.4 DRD: OFF dX: dY: Dist: 10 Design Window Create Edit Verify Connectivity Options Routing NCSU Tools Help Ŷ k Ð Q 9 olin Da Br ni in li m r 집 a Se Balle [<u>362</u>] mouse L: showClickInfo() M: leHiMouse iGetCu


Note: You need to adjust the path width to 2.4 when approaching the pads.


Figure 112: Connecting the I/O pins and gnd! to the pads.

The next step (Step 10) is optional; however, I recommend it because it helps you a lot while you are testing the chip. While testing, you may know which pad is for which pin directly under the telescope without going back to your documentation.

10. Select Metal1 from the LSW window.

11. Go to *Create...Label...*, and then fill in the pin names and stamp them down right next to the pad numbers one by one. The completely labeled PF is as in Figure 113.

1. Type in "I_refx8",

Stamp it down above 2^{nd} pad to the right from upper left corner;

 Type in "I_refx4", Stamp it down above 1st pad to the right from upper left corner;

3. Type in "I refx2",

Stamp it down above 1st pad down from upper left corner;

- Type in "I_ref_out", Stamp it down above 2nd pad down from upper left corner;
- Type in "I_ref_in",

Stamp it down above 3rd pad down from upper left corner;

6. Type in "gnd!"

Stamp it down above 4th pad down from upper left corner;

Use the proper "Justification" to make sure that the plus sign is in the pad.

Figure 113: Labeling the pads.

- 12. Save the layout.
- 13. *Run* the *DRC*. There should be **217** errors afater DRC check, no more and no less. If there are more than 217, then you need to use your debugging skills to fix it.

Now the PF is done. The next steps are to extract it, run LVS, and then build analog, which are the same progresses as you do after you are done with a layout.

Before running the LVS, we need to create the schematic and symbol view for the PF.

14. Copy the symbol view and schematic view from cell **CurrentMirror** to cell **CurrentMirror_PF**.

To do so, go to the *Library Manager*, make sure you select the view you are copying first; then go to the menu, select *Edit...Copy...*, and then fill out the form as in Figure 114. If the *Copy Problem Form* pops up, choose *Fix Errors*, then *OK*. The copied views will show up in the Library Manager window as in Figure 115.

🔀 Copy View 🛛 🚺	🕻 📉 Copy View 🛛 🔀
	From
Library LeafCell	Library LeafCell
Cell CurrentMirror	Cell CurrentMirror
View	View symbol <u>i</u>
То	T0
Library LeafCell	Library LeafCell
Cell CurrentMirror_PF	Cell CurrentMirror_PF
View schematid	View symbol]
- Options	Options
Copy Hierarchical	🔟 Copy Hierarchical 📃
▼ Skip Libraries [ANALOG MyDyanmic] NCSU_Analog_Parts /	Ski: Libraries ANALOG MyDyanmic Ski: Libraries NCSU_Analog_Parts
✓ Copy All Views	Copy All Views
Views To Copy Echematic	Views To Capy Jschematic
_ Update Instances: _ Of Entire Library	_ Update Instances:Of Bitire Library
OK Apply Cancel Help	OK Apply Cancel Help

Figure 114: Copying the schematic view and symbol view of the current mirror from cell CurrentMirror to cell CurrentMirror_PF.

🔀 Library Manager: WorkArea	: /graduate/ng829725/LeafCell								
<u>File E</u> dit <u>Vi</u> ew <u>D</u> esign Manager									
_ Show Categories Sho	w Files								
Library	Cell	- View							
LeafCell	[CurrentMirror_PF	Isymbol							
ANALOG LeafCell MyDyanmic NCSU_Analog_Parts NCSU_Digital_Parts NCSU_Sheets_8ths	CurrentMirror CurrentMirror2_PF CurrentMirror2_PF CurrentMirror2_metal CurrentMirror_PF CurrentMirror_TB	schematic symbol							

Figure 115: Library Manager window after copying.

15. *Extract* the *CurrentMirror_PF*.

16. Run LVS for your PF (Figure 116).

C Artist LVS				
Commands		13	Help 3	
Run Directory	LVŠ		Browse	
Create Netlist	schematic	extracted		
Library	LeafCell	LeafCell		
Cell	CurrentMirror	CurrentMirror	_PF	1. Make sure you have
View	schematic	extracted		the right cell for LVS.
	Browse Sel by Cursor	Browse Sel	by Cursor	2. Click on Run to start
Rules File	divaLVS.rulį̇̃		Browse	the LVS.
Rules Library	PADFRAME			
LVS Options	Rewiring	Device Fixing	4	 Make sure the LVS has succeeded.
Correspondence Switch Names Priority Run Backannotate	Run local _ [Output Error Display	_/lvs_corr_file	Create Info Id Mixed	 Click on the Output to see if it has really succeeded (Figure 117).
Analysis Job Succ	eeded			×
📱 Job '/home/s	hao/LeafCell/LVS' th	at was starte	l at 'Feb	6 13:57:31 2006' has succeeded
ОК		Cancel		Help

Figure 116: Running LVS for PF.

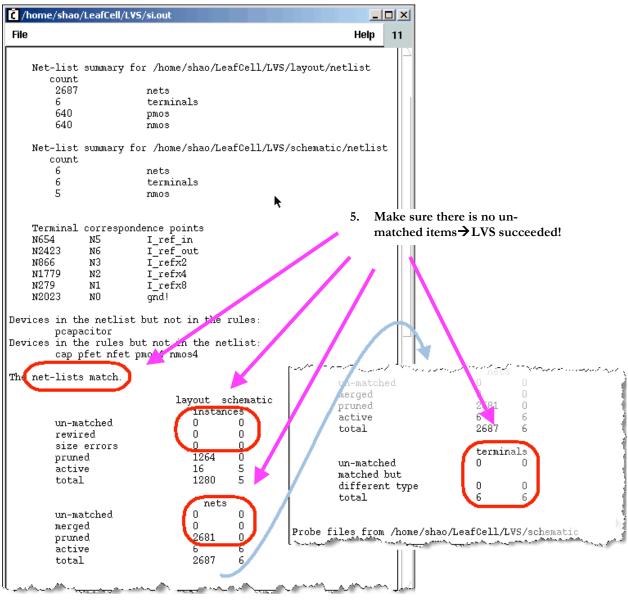


Figure 117: Running LVS for the PF.

17. After the Net-lists match, go back to the LVS form to Build Analog. (Figure 118)

Correspondence	e-Ele,	17/shae/l	2				7		
	· _		Build Analog Extracted View					×	
Switch Names		×	ок	Cancel	Defaults	Apply		Help	
Priority 🗓	riority 🗓 Run ocal Extracted Parasitics 🔶 Include All 🖉 Set From Schematic 🗸 None								
Run	Output	Error	Display	Monit	or I	nfo			
Backannotate	e Paras								
				k					

Figure 118: Build Analog for the PF

Now it is time to simulate the current mirror in the PF. Before doing this, we need to change the symbol of the current mirror in the test bench.

18. Open the CurrentMirror_TB schematic. Replace the part CurrentMirror with CurrentMirror_PF as in Figure 119.

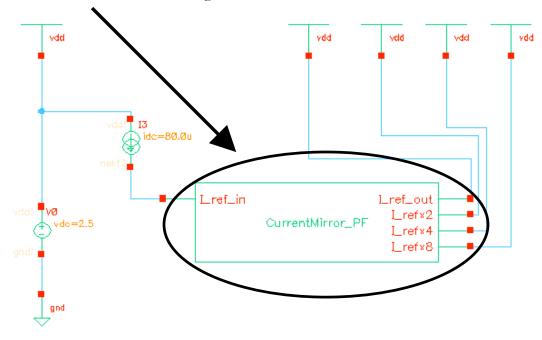



Figure 119: Replacing the CurrentMirror in the test bench with CurrentMirror_PF.

19. Now open the Analog Environment window (Figure 120) again. Go to *Session...Load State* to load *State1*, which is the one we save earlier in the tutorial.

		log Design E	nviron	menl	: (1)							<u>- 0 ×</u>
Status	s: Ready	,		T=27 C Simulator: spectres					eS 7			
Session	Setup	Analyses	Varia	bles	Outputs	Simu	lation	Results	; Too	ls		Help
	Desigr	ı					Analy	ses				Ę
Library 🗆	LeafCel	1	#	Тур	e	Argum	ents				Enable	JAC ■ TRAN
Cell	Current	Mirror_TB	$\begin{vmatrix} 1\\ 2 \end{vmatrix}$	tra dc	n	0	20n 0	5			yes ves	- DC
View	schemat	ic					ĩ	Ū			,	X Y Z
De	sign Vari	iables					Outp	uts				₽
# Nam	e V	alue	#	Nam	e/Signal	/Expr	ĩ	Value	Plot	Save	March	
			1	I0/	I_refx2				yes	no	no	
			2		I_refx4				yes	no	no	
			3		I_refx8				yes	no	no	1
			4		I_ref_ou				yes	no	no	10-
			5	I0/	I_ref_in				yes	no	no	8
							Plottin	ig mode:		Replac	;e	IN
>												ť

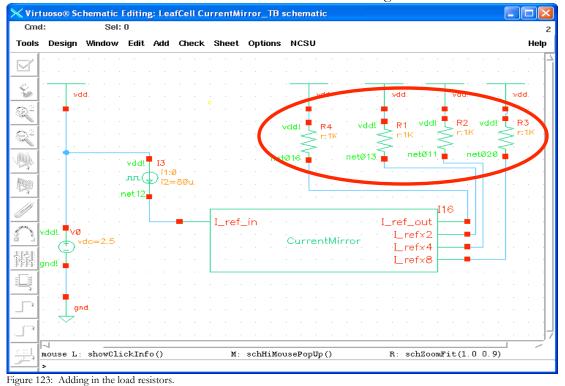
Figure 120: Setting up the Affirma to simulate the PF.

19. Run the simulation, and then the result should look like Figure 121.

Figure 121: Setting up the Affirma to simulate the PF.

The results are within 1% error. Therefore, the CurrentMirror design is done.

Simulation for the Slew Rate:


In order to find out how the current mirror reacts with loads as the reference input current switches, we need to do a step transient responds. Before we start the simulation, we need to make some changes in the test bench.

1. Go to CurrentMirror_TB, click at the current source (Figure 122), keying "Q" to bring out the *property editor*, and then replace the part **idc** with **ipulse**. Set it up as in Figure 122. After the editing, click OK to conform.

× Vir	tuoso® Sc	hematic:	Editin	g: Lea	ıfCell Cu	rrentMi	rror_TB s	chema	tic				
Cm	d:	Sel:	1			🔀 Edit	Object P	roperti	ies				
Tools	Design	Window	Edit	Add	Check	ок	Cancel	Apply	Defaults	Previou	s Next		Help
\sim							· · _			·			
		.vdd			· ·	Apply [•]	То	only c	urrent 💷	instanc	e		
- V						Show		_l sy	stem 🔳	user 🔳	CDF		
Q ¹							D	rowse	Baca	t Instanc	o Lohole	Dienlou	
							Property			t matanc	Value	Dispidy	Displa
Ę				तता 🕇	E		Library	·	NCSU 2	Analog_P	arts.		 off
1		· · · /	́. _л	hđ			Cell Nan		ipuls	8			off
- North Anna			пе	12	12=60		View Na		symbol				off
颅				Ī) 	<u>ч</u> .			
				. L			Instance	e Name	I I I				off _
	vddl.		_ ·						Ad	d	Delete	Mod	ify
i i	l · Č	$\mathcal{Y}^{vdc=2}$.Э	• •			User Pr	operty	Mas	ster Value	•	Local Valu	ue Displa_
	gindli 🖕						lvsignor	ne	TRUE				
hh							CDF Par	rameter	r		Value		Displa
						AC ma	qnitude		Ĭ				off
		.gnd				AC pha	0)*** *		1		off
	▽	7				Curren			÷ 0	Ă			off
алаў 1917 — В				• •		Curren				™. lu Ai			off
1 II.	Mouse L	showCli	.ckInf	0()		Delay				ln š			off _ /
<u></u>	>			- 0		Delay	une			ur ei			

Figure 122: Editing the current source.

2. Add the 1K resistor loads to the current mirror as in Figure 123.

- 3. Check and Save the test bench.
- 4. Go to Tools to open the Analog Environment. Make sure to set up the Simulator/Directory/Host as well as the Design.
- 5. Click to open the Choose Analysis Form (Figure 124.) Set it up as in Figure 124.

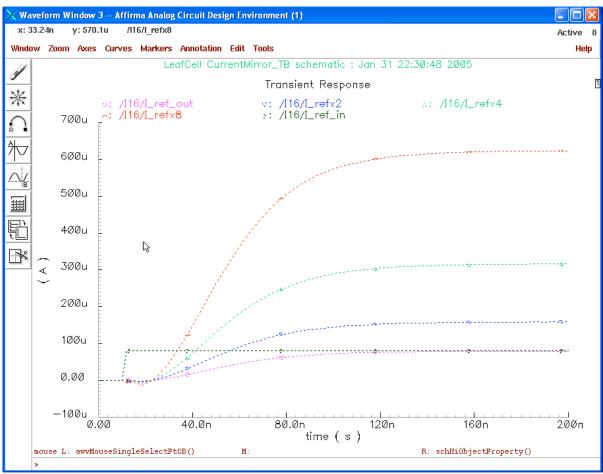
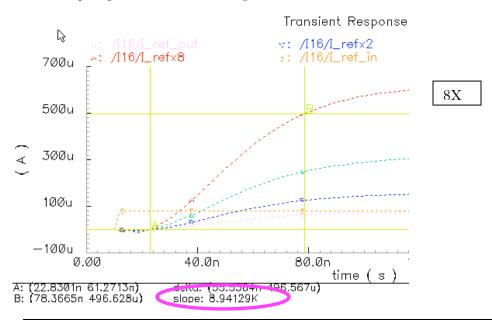
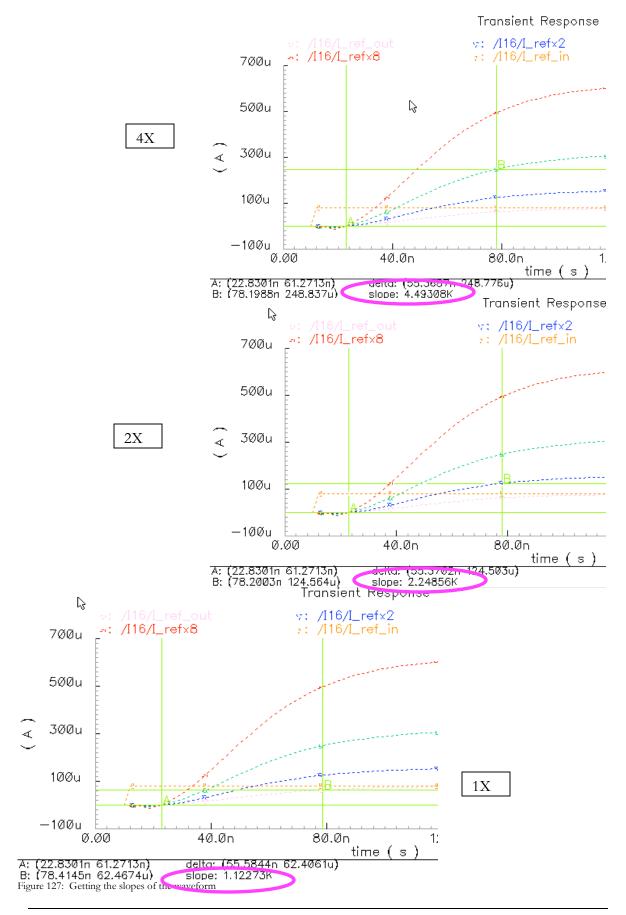

🗙 Affirma Analog Circuit D	esign Environment (1)	
Status: Ready	T=27 C Simulator: spectre	S 3
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help
Design	Analyses	+
Library LeafCell	# Type Arguments Enable	JAC TRAN
Cell CurrentMirror_TB	🗙 Choosing Analyses Affirma Analog Circuit Desi. Choos	e Analyses
View schematic	OK Cancel Defaults Apply	X Y Z
Design Variables	Analysis ♠ tran √ac √sp √pdistu	l∰)
# Name Value	√dc √xf √pss √noise	34
	Transient Analysis	1
	Stop Time 200n	*
	Accuracy Defaults (empreset)	
>	conservative moderate liberal	£

Figure 124: Setting up the Affirma for simulation.

6. Select the input and outputs of the current mirror to be the Outputs...To Be Plotted... (Figure 125).

🗙 Affirma Analog Circuit De	sign Environment (1)				
Status: Ready	T=27 C Simulator: spect	reS 3			
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help			
Design	Analyses	┤╶Ҳ _┱			
Library LeafCell	# Type Arguments Enabl	TRAN			
Cell CurrentMirror_TB	1 tran 0 200n yes				
View schematic	▶	X Y Z			
Design Variables	Outputs				
# Name Value	# Name/Signal/Expr Value Plot Save March				
	1 I16/I_ref_in yes no no				
	2 I16/I_ref_out yes no no	8			
	3 I16/I_refx8 yes no no	- 1			
	4 I16/I_refx4 yes no no	192			
	5 I16/I_refx2 yes no no	14 👪			
4					


Figure 125: Setting up the Affirma for simulation.



7. Run the simulation. The resulting wave form will be shown as in Figure 126.

Figure 126: Step transient response waveform.

8. To obtain the slew rate for the current responses, use Crosshair Marker A and B (Figure 127). The slope shown at the bottom is slower than what you are going to have, because the spice parameters have changed.

After Thoughts (Ask yourself & Try yourself):

1. If we zoom close into the waveform, right after the reference current switches, the outputs jump to the other direction before they run in the same direction as the reference (Figure 128). Why?

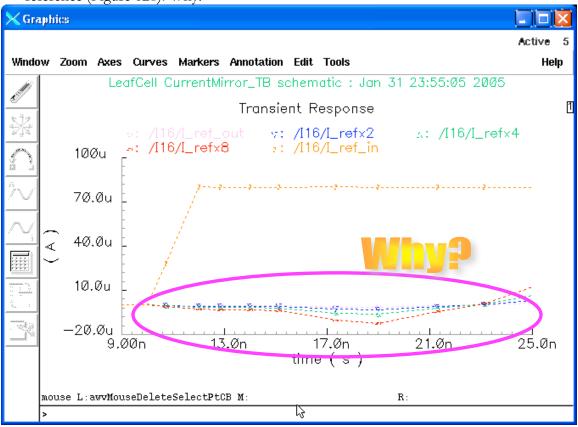
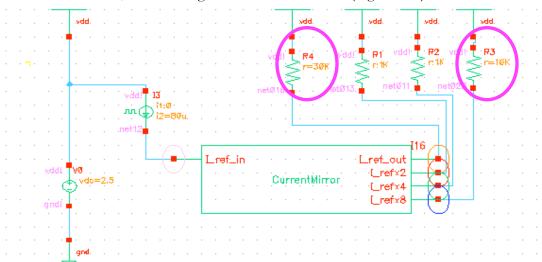



Figure 128: Dipping in the other direction

2. What happen if we change the load? How will the current mirror reacts?

For example, if we change the resistance load for I_ref_out to be 30K and the one for I_ref_x8 to be 10K, the resulting waveform differs a lot (Figure 129)

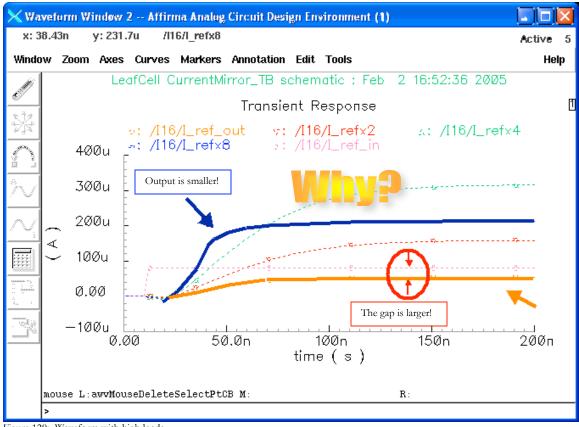


Figure 129: Waveform with high loads.

If you zoom in to take a closer look at the wave, you will see some kind of osilation (Figure130). Why is that happening?

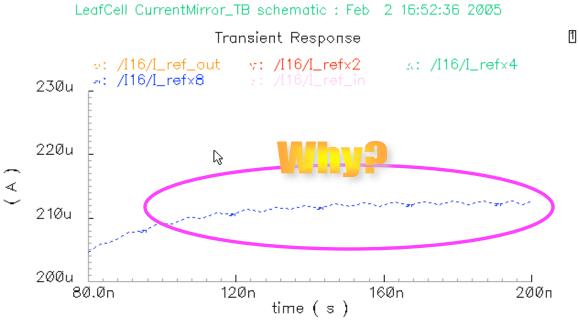


Figure 130: Why it oscilates?

Just try to play around with it, you'll find more questions. $\ensuremath{\sc v}\ensuremath{\sc v}\ensuremath\sc w}\ensuremath{\sc v}\ens$

Additional Way for the Same Design:

There is always more than one way to do designs. For this current mirror, you can lay it out in one leaf as in figure125. Can you figure out the input and outputs? Can you also tell which transistor is grounded?

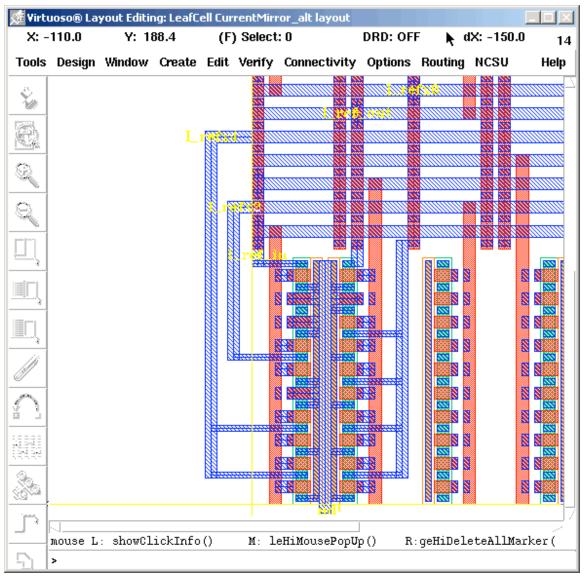


Figure 131: Another way to layout the CurrentMirror.

After the same design steps of DRC, LVS, and build analog, the simulation results are shown in Figure 132.

It works!

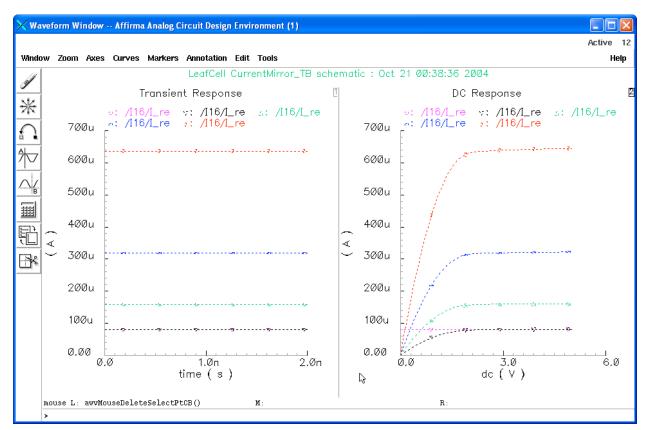
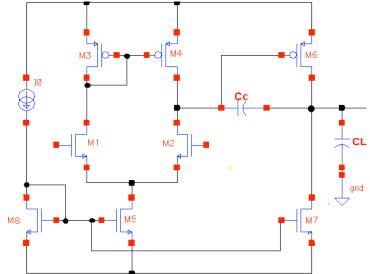


Figure 132: Simulation waveform for the CurrentMirror laid out in figure 125.

Chapter 3: Design of a OTA

Section 1: Initial Design

Design specification:

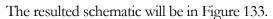

I=80uA; Vdd=5V; Vss=0V; Cl=5pF GB>=1MHz.

Hand Calculation:

Some equations to be used:

 $C_{c} = .22(C_{I})$ $I_5 = C_c * SR$ $S_3 = (W/L)_3 = \frac{I_5}{K_2'[V_{dd} - V_{in(m,m)} + V_{d2} + V_{in}]^2}$ $S_{4} = S_{2}$ $p_3 \approx \frac{-g_{m3}}{2C_{g33}} = \frac{-\sqrt{2K'_p S_3 I_3}}{2(.667)W_3 L_2 C_{\infty}}$ $g_{m1} = GB * C_c$ $S_1 = S_2 = \frac{G_{m1}^2}{2K'L}$ $V_{is(\min)} = V_{gs5} + V_{t5}$ $V_{ds5} = V_{in(min)} - V_{SS} - \sqrt{(I_5 / \beta_1)} - V_{t1}$ $S5 = \frac{2I_5}{K_6'(V_{esc})^2}$ $g_{m6} = 2.2(g_{m2})(C_L/C_c)$ $S_6 = S_4 (g_{m6} / g_{m4})$ M8 or $S_6 = \frac{g_{m6}}{K_6' V_{ds6(set)}}$ (depend on trade-offs) Vss $I_6 = \frac{g_{m6}^2}{2K_6'S_6}$ $S_7 = S_5(I_6/I_5)$ $A_{\rm r} = \frac{2g_{\rm m2}g_{\rm m6}}{I_{\rm s}(\lambda_{\rm r} + \lambda_{\rm r})(\lambda_{\rm s} + \lambda_{\rm r})}$ $P_{diss} = (I_6 + I_5)(V_{dd} + |V_{ss}|)$

To make sure the mirror pole P3 is greater than the dominant pole defined the GB



One example for the transistor sizes:

The equations set in the previous page shows the step by step calculation for the OTA. However, in this design, instead of starting from sizing the active load (M3 & M4) in the circuit, I started from sizing the smallest transistors, which are M1 and M2 in the above OTA structure. It is because if we don't start from the smallest transistors, by following the above calculation order, the ration of the W/L will be less than one for the smallest transistors. In another words, according to the ALC templates, we need to connect the basic transistor units in series, resulting the effective length to be much bigger than the minimum channel length. We don't want that! Therefore, I assume $(W/L)_{1,2}$ to be 6.4 m/6.4 m, which is the minimum transistor unit size.

The calculated results are shown as follows:

Tansistor:	1	2	3	4	5	6	7	8
S	1	1	3	3	8	40	30	8
W/L	6.4/6.4	6.4/6.4	19.2/6.4	19.2/6.4	51.2/6.4	256/6.4	192/6.4	51.2/6.4
Cc = 1.2p	νF							

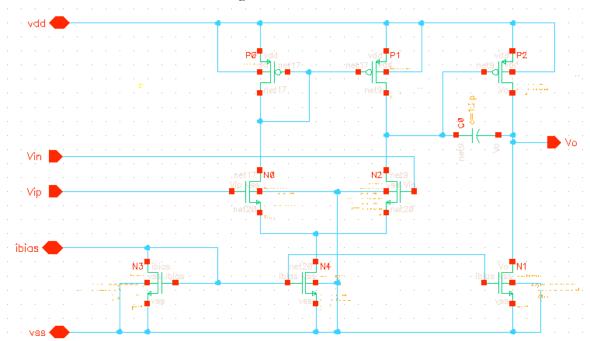


Figure 133: Parameter sizing for the OTA.

Section 2: Getting started with Schematic Capture and Spice Simulation

Creating the schematic view:

1. Create a new cell view for the OpAmp (Figure 134)

🐱 Library Manager:							
<u>File</u> <u>E</u> dit <u>V</u> iew	<u>D</u> esi	gn Manag	er	× Create	e New File	,	
New	P.	Library	_	ок	Cancel	Defaults	Help
Open	^0	Cell Vjew				I	
Open (<u>R</u> ead-Only)	^r	7 Category	tb	Library N	lame	LeafCell 💷	
Save Defaults			urrentMir	Cell Nam	e 🖸	pAmp	
Open Shell Window	^р	1 1 100	urrentMir		no [3	chematic	
Exit	^x	1 1 1 1 1	urrentMir		,		
NCSU Digital Part	3		urrentMir: urrentMir:	Tool	Composer-Schematic		
مدينة فالمستعمليا		كاللعداد ف	a de la calculation de	Library path file			
Figure 134: Create a new cell vie	ew for t	the OpAmp.		/oradua	te/ng8295	25/LeafCe	ell/cds.lib

2. Adding Instances and place them correspondingly(Figure 135)

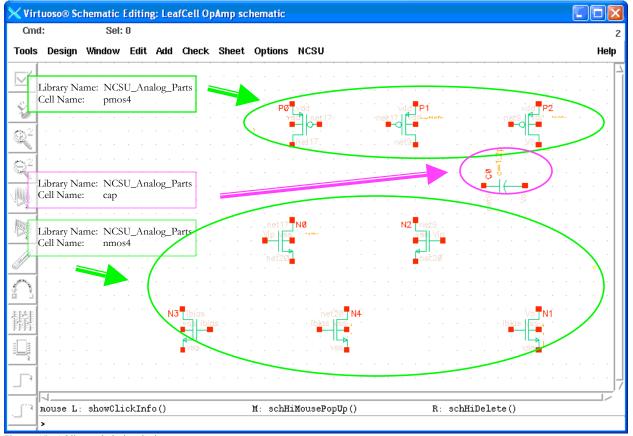


Figure 135: Adding and placing the instances.

3. Adding the input and output pins(Figure 136):

Cmd	:	Sel:	0					
Tools	Design	Window	Edit	Add	Check	Sheet	Options NCSU	Help
⊒r	· · · v	dd 🔶 🦂			 C	· · ·		
i Maria	· · ·	· · · · ·	· ·		· · ·		P0 vdd vdd P1 vdd P2 rvg net17 net17 fod - net9 fod P-1 - net9	
2							ularet17	
2								► Vo
Ņ.	· · · · · · · ·							
ŞQ ŞQ	· · · ·	P	· ·				net20	
	n n n N n ibia	s - 1 - 1 - 1 s 🔶 - 1			· · ·		· · · · · · · · · · · · · · · · · · ·	
J		· · · ·		N3	ibios vss ibios		inet20 N4 Vo N1 ibios les ibios les	
					ivsş 		· · · · · · · · · · · · · · · · · · ·	
-	√	33 🛑						

Figure 136: Adding and placing the instances.

4. Adding wires(Figure 137):

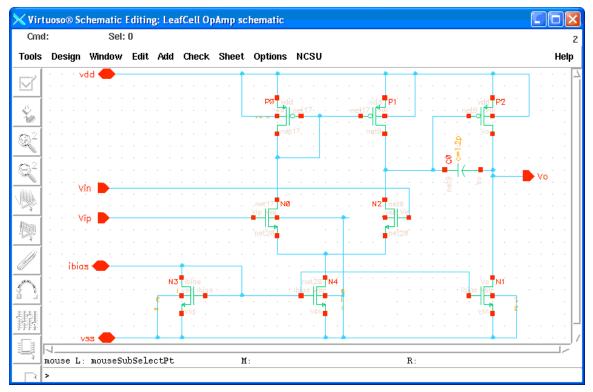


Figure 137: Wiring up the OTA.

Creating a symbol view:

5. Creating the symbol view from the schematic cell view (Figure 138):

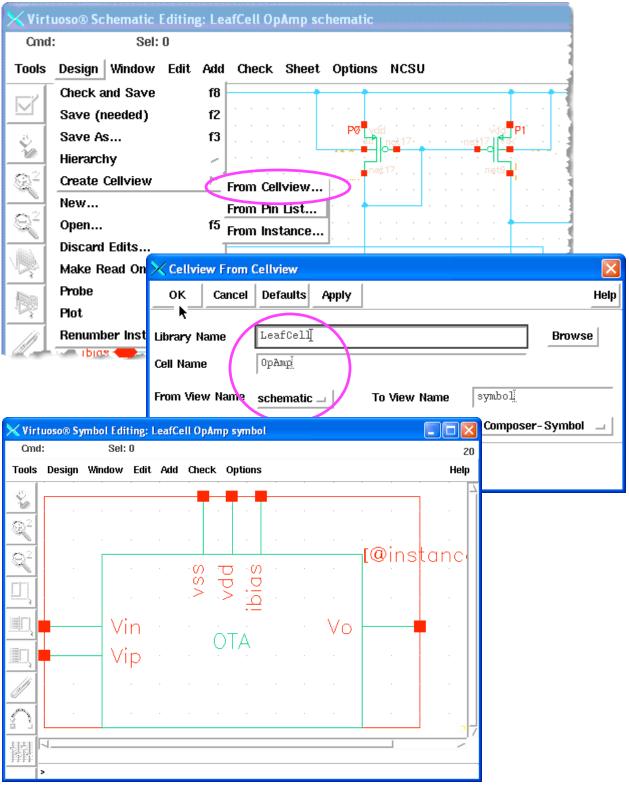
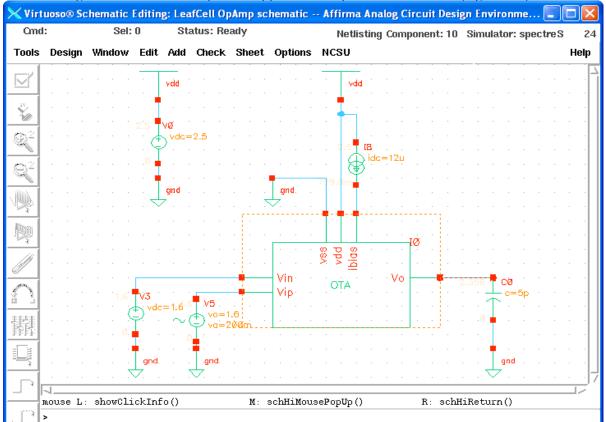


Figure 138: Creating the symbol view from schematic cell view.

Creating a test bench:


7. Create a new cell view for the test bench, named OTA_tb (Figure 139):

× Create	🗙 Create New File 🛛 🛛 🔀								
ок	Cancel	Defaults	Help						
	ame _	Leaf	Cell 💷						
Cell Name	e [OTA_tb							
View Nan	ne 「	schematic							
Tool	<u>c</u>	Composer-Schematic 💷							
Library path file									
/graduate/ng829725/LeafCell/cds.lib									
Figure 139: Cr	eating OTA_	tb.							

8. Inserting the OpAmp into the testbench (Figure 140)

× Component Browser		🗙 Add II	nstance			×
Commands	Help 21	Hide	Cancel	Defaults		Help
Library Leaf	Cell	Library	LeafCell	[Browse
Flatten _		Cell	OpAmpi			٣
Filter * [View	symbolį			r
		Names	÷			-
CurrentMirror CurrentMirror2	× Virtuo	so® Schen	natic Editin	ng: LeafCell ()	TA_tb sche	
CurrentMirror_PF OpAmp	Cmd:					
	Tools D	esign Win	dow Edit	Add Check	. Sheet Opt	ions
						· · · · X
	1. 1.			 vss vdd vdd 		
N	\mathbb{R}^2	· · · ·	Vin	· · · · · · · · · · · · · · · · · · ·		· · ·
	Q 2	<mark>-</mark> .	Vip			
	ri 🐙					7

Figure 140: Adding the OpAmp and stamping it down into the OTA test bench.

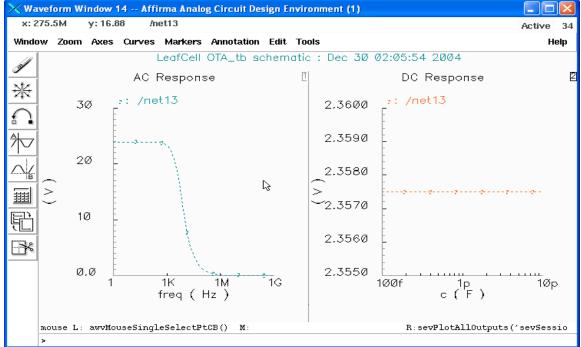
9. Adding CL, Ibias, and other power supplies to complete the test bench (Figure 141)

Figure 141: Adding the OpAmp and stamping it down into the OTA test bench.

		A
10 Setting the two	input voltage sur	plies as in Higher 1/12
10. Setting the two	input voltage sup	pplies as in Figure 142.

🗙 Edit	Object Properties		D	Kedit Object Properties	×
ок	Cancel Apply D	efaults Previous Next	Hel	OK Cancel Apply Defaults Previous Next	Help
Apply 1 Show		rent _ instance _ em III user III CDF		Apply To only current instance issues Show system issues	
	Browse	Reset Instance Labels Display		Browse Reset Instance Labels Display	
	Property	Value	Display	Property Value	Display
	Library Name	NCSU_Analog_Parts	off 💷	Library Name NCSU_Analog_Parts	off 💷
	Cell Name	vsinį	off 💷	Cell Name vdč	off 💷
	View Name	symbol	off 💷	View Name symbol	off 💷
	Instance Name	₩5 <u>ĭ</u>	off 💷	Instance Name 🛛 🕅	off 🔟
		Add Delete Modify		Add Delete Modify	
	User Property	Master Value Local Value	Display	User Property Master Value Local Value	Display
	lvsignore	TRUE	off 💷	Ivsignore TRUE	off _
	CDF Parameter	Value	Display	CDF Parameter Value	Display
AC mag	jnitude	800. Om V.	off 💷	AC magnitude	off 💷
AC pha	se	¥	off 💷	AC phase	off _
Offset	voltage	1.6 V.	off 💷	DC voltage	off 🔄
Amplitu	ide	200m V <u>ř</u>	off 💷	Noise file name	off 🖃
Freque	ากข	Y	off	Number of noise/freq pairs	off _

Figure 142: Setting up the Vsin and Vdc for the two inputs to the OTA.


Simulation in Spectre Spice using the Affirma environment:

11. From the OTA_tb schematic window, go to Tools... Analog Environment to open the form. Set up the form as in Figure 143.

🔀 Affirma Analog Circuit D	esign Environment (1)	
Status: Ready	T=27 C Simulator: spectre	S 14
Session Setup Analyses	Variables Outputs Simulation Results Tools	Help
Design	Analyses	
Library LeafCell	# Type Arguments Enabl	
Cell OTA_tb	1 ac 1 1G yes 2 dc t 100f 10p yes	
View schematic		
Design Variables	Outputs	
# Name Value	<pre># Name/Signal/Expr Value Plot Save March</pre>	
	1 net13 Click here to start the yes allv r simulation.	
1		v 🔅
Analysis ↓ tran ↓ ac ♦ dc ↓ xf	Sp	
DC # Save DC Operating Point	inalysis	
Sweep Variable Temperature Component Parameter	Component Name /00 Select Component	
Model Parameter	Parameter Name	
Sweep Range ♦ Start-Stop ↓ Center-Span	100f Stop 10p	
Sweep Type		

Figure 143: setting up the Affirma Form for simulation.

We need to set up the AC analysis for Bode Plots, and the DC analysis to look at the operating points of the transistors.

The simulation waveform will appear after the simulation is done (Figure 144).

Figure 144: setting up the Affirma Form for simulation.

12. To plug the Bode Plot, go back to the Affirma Analog Environment form, click at Results...Direct Plot...AC Magnitude & Phase (Figure 145).

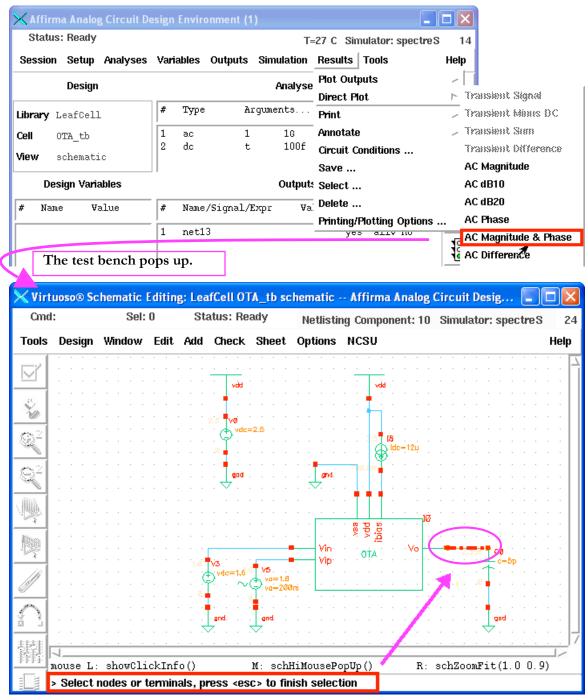


Figure 145: Plotting the Bode Plot for the output terminal.

Select the output terminals, then press Esc, the result waveform will show (Figure 146.) The Bode Plot is shown in section 2 in the Waveform Window. However, by using Crosshair Marker A, we find that the -3dB point is at ~5 KHz instead of 4MHz in our Spec. That is, the GB spec is not met.

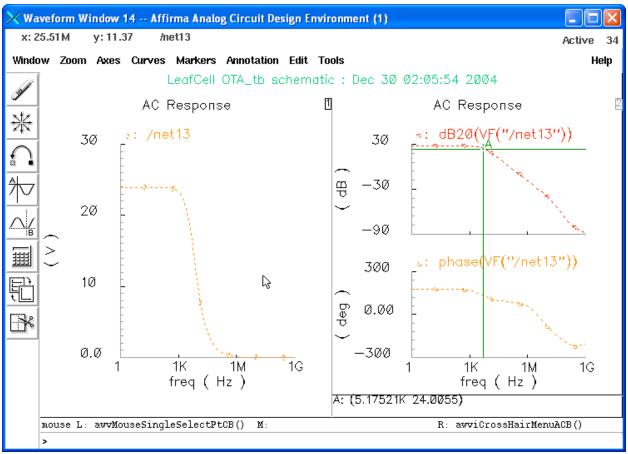


Figure 146: Bode Plot is shown in section 2 in the waveform.

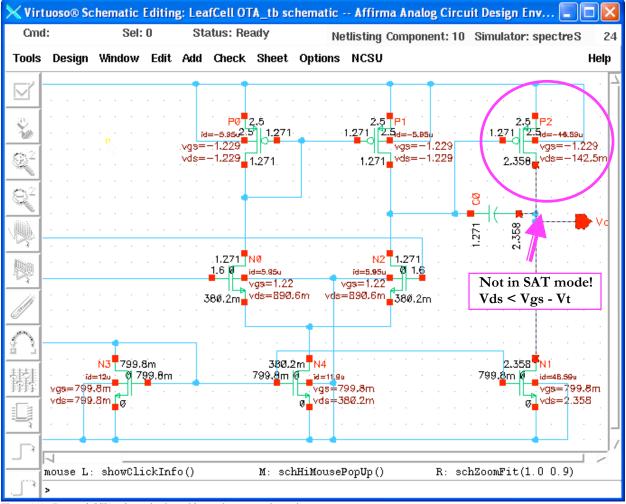
14. In order to find out if the transistors are working, we can check their operating points. In the *Affirma Analog Environment* form, click at *Results...Annotate...DC Operating Points...*,(Figure 147).

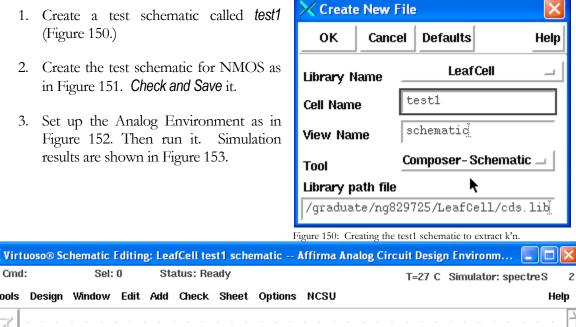
	ma Analog Circuit De	esign	Envir	onment (1)					×
Session	ıs: Ready n Setup Analyses	Vari	ables	Outputs	Simula		27 C Sin Results	nulator: spec Tools	ctreS 1 Helj	14 p
	Design				An	alyse	Plot Outy Direct Pl			
Library	LeafCell	#	Туре	A	rgument	3	Print			
Cell	OTA_tb	1	ac	1	1	.G	Annotate	•	P-1	DC Node Voltages
View	- schematic	2	dc	t	1	.00f	Circuit C	onditions		DC Operating Points
							Save			Model Parameters
De	esign Variables				0		Select			Transient Node Vollage
# Na	me Value	#	Name	/Signal/H	Expr	Va.	Delete			Transient Operating Po
		1	net1	3			Printing/I भुष्टः	Plotting Opti	ions	Net Names
							,		12	Component Parameters
									-12	Design Defaults

Figure 147: Setting up to show the DC operating points for the transistors.

15. The OTA_tb schematic will then pop up. Click at *Design…Hierarchy…Descend Edit…* (Figure 148). The *Descend Window* will then pop up, asking you to point at the instance that you want to descend edit (Figure 148).

then click OK. Go back to the Affirma Analog Environment form, click at Results...Direct Plot...AC Magnitude & Phase one more time (Figure 147). The schematic view of the OTA will then be shown with all the operating points for the transistors (Figure 149).




Figure 149: Descend OTA schematic view with transistor operating points.

By looking at the operating point, we see that the OpAmp we didn't choose the right Iref. You can easily correct it by choosing a much smaller Iref. (1u to 10uA works for me. How about yours?)

Appendix A: How to extract K??

We need to go back to the very beginning. Start from the calculation again. Since we used the values for K'n and K'p from the MOSIS PARAMETRIC TEST RESULTS when we did the first calculation, we can start from extracting K'n and K'p ourselves to have more accurate K' values.

- 1. Create a test schematic called test1 (Figure 150.)
- 2. Create the test schematic for NMOS as in Figure 151. Check and Save it.
- 3. Set up the Analog Environment as in Figure 152. Then run it. Simulation results are shown in Figure 153.

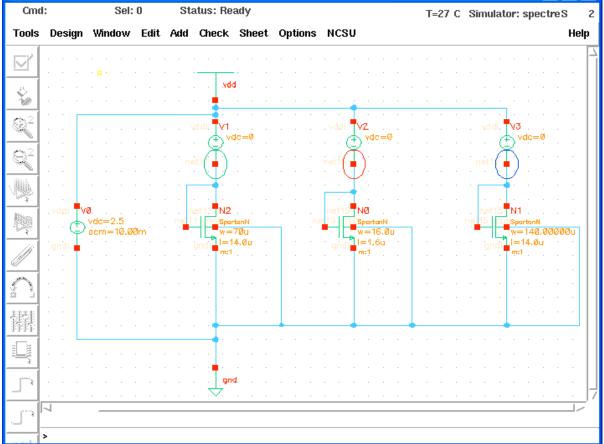
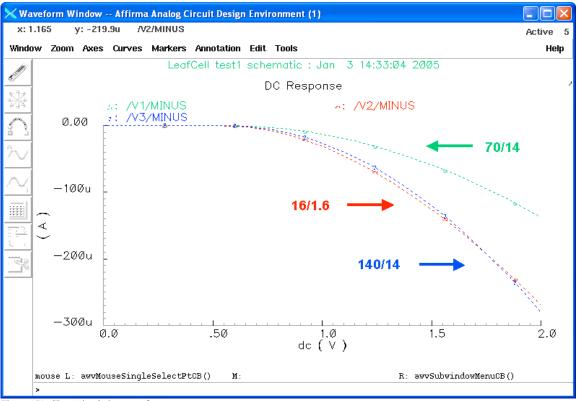
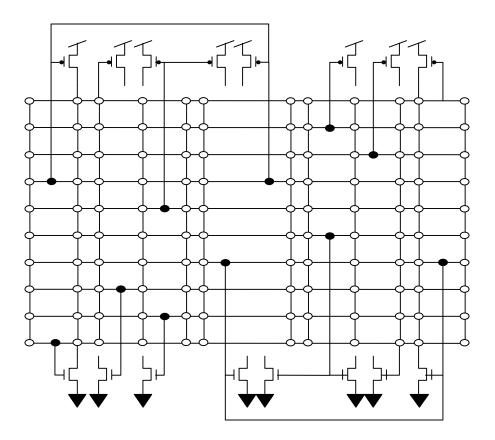


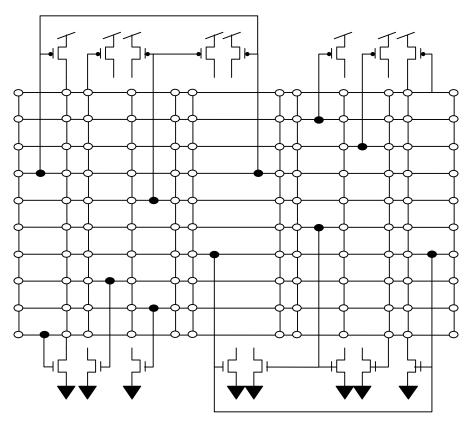
Figure 151: test1 schematic.

Status	: Ready					T=	=27 C	Simu	lator	spectre	s -
Session	Setup	Analyses	Vari	ables Output	s Simulat	tion	Result	s To	ools		Help
	Design				Ana	dyses	;				
Library L	.eafCell		#	Туре	Argument	s				Enable	
Cell t	est1		1	dc	0		2			yes	
View s	chemati	.c									
Des	ign Varia	ables			Ou	tputs					[]
# Name	e Va	alue	#	Name/Signal	/Expr	Val	ue :	Plot	Save	March	
			1	V1/MINUS				yes	yes	no	
			2	V2/MINUS V3/MINUS				·	yes ves	no no	1.3
				\$37MIN03				,00	100	1.0	
				ence/simulatio							1.

Figure 152: Setting up for simulation for test1.




Figure 153: Test1 simulation waveform.


4. Goto *Markers...Vertical Marker...*; Create markers as in Figure 154; Click at *Display Intercept Data*. Data form will show up as in Figure 155.

Graphics x: 1.106 y: -241.4u /V2/M	AINUS				
2		tion Edit Toolo			Active
		st1 schematic : Jo	n 3 14:33:04 20	iØ5	Helj
		DC Respor			
长/V1/M		Do Nespoi	a: /V2/MINUS		
. 0(7.0)			a, 7027000000		
0.00 <u>31 / 35 M</u>	-				
			10000000 million		
Vertical Markers (window:4)				and the second s	
OK Cancel Apply Display Inte	ercept Data	Help	148 E 21	and the second	
arker locations 750m 1 1.25 1.	5 1.75 2[S. S	1
Add Graphica		Delete All		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	
-			·		
-300u		M1 M2		M4 M5	_M6
0.0	.50) 1 dc (0. V)	1.5	2.0
mouse L: awvMouseSingleSe	electPtCB()	M :	R: aw	vVerticalMarkerMenuC	B()
> ure 154: Creating vertical markers			R: aw	vVerticalMarkerMenuC	B ()
			R: aw	vVerticalMarkerMenuC ■ ■ Hel	
vure 154: Creating vertical markers f Results Display Window File			R: aw		
vure 154: Creating vertical markers f Results Display Window File			R: aw		
are 154: Creating vertical markers f Results Display Window File Gurve name map:			R: aw		
Care 154: Creating vertical markers for the second			R: aw		
Care 154: Creating vertical markers for the second			R: aw		
The second seco		datas.		Hel	
The second seco			R: aw		
The second seco	for intercepting	datas. 70/14	16/1.6	- Hel	
A results Display Window Results Display Window File Curve name map: Curve3 - /V1/MINUS Curve2 - /V2/MINUS Curve1 - /V3/MINUS Curve table: Curve table: Curve table: Curve table: Curve table: Curve table: Curve table: Curve ta	for intercepting	datas. 70/14 Curve3	16/1.6 Curve2	- Hel 140/14 Curve1	
Curve name map: Curve3 - /V1/MINUS Curve1 - /V2/MINUS Curve1 - /V3/MINUS Curve table: Curve tab	for intercepting	datas. 70/14	16/1.6	- Hel	
vire 154: Creating vertical markers for the second sec	for intercepting X value 750m 1 1.25	datas. 70/14 Curve3 -2.485453642u -12.92819848u -31.94717256u	(16/1.6) Curve2 -6.904428559u -31.32295304u -71.85834193u	Left Hel Curve1 -5. 105133179u -26. 3584978u -64. 96813394u	
Curve name map: Curve3 - /V1/MINUS Curve3 - /V2/MINUS Curve1 - /V3/MINUS Curve table: Curve tab	for intercepting X value 750m 1	datas. 70/14 Curve3 -2. 485453642u -12. 92819848u -31. 94717256u -59. 19803009u	(16/1.6) Curve2 -6.904428559u -31.32295304u	Left Help Curve1 -5. 105133179u -26. 3584978u	
<pre>> It (anchor) 2 It (anchor) It (ancho</pre>	for intercepting X value 750m 1 1.25 1.5	datas. 70/14 Curve3 -2.485453642u -12.92819848u -31.94717256u	16/1.6 Curve2 -6.904428559u -31.32295304u -71.85834193u -126.0430733u	Lange Curvel -5. 105133179u -26. 3584978u -64. 96813394u -120. 2381664u	
A creating vertical markers in the second s	for intercepting X value 750m 1.25 1.5 1.5 1.75	datas. 70/14 Curve3 -2. 485453642u -12. 92819848u -31. 94717256u -59. 19803009u -94. 59227697u	16/1.6 Curve2 -6.904428559u -31.32295304u -71.85834193u -126.0430733u -192.2214402u	Lange Curvel -5. 105133179u -26. 3584978u -64. 96813394u -120. 2381664u -191. 9856466u	

Figure 155: Creating vertical markers for intercepting datas.

5. From the data charts, you will be able to find out the K' values you need.

